【題目】已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個不相等的實數(shù)根x1,x2.

(1)a的取值范圍;

(2)是否存在實數(shù)a,使方程的兩個實數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.

:(1)根據(jù)題意,Δ=(2a-1)2-4a2>0,解得a<.a<0,方程有兩個不相等的實數(shù)根. (2)存在.理由如下:如果方程的兩個實數(shù)根x1,x2互為相反數(shù),x1x2-=0,① 解得a,經(jīng)檢驗,a是方程的根.a,方程的兩個實數(shù)根x1x2互為相反數(shù).上述解答過程是否有錯誤?如果有,請指出錯誤之處,并解答.

【答案】上述解答有錯誤.詳見解析.

【解析】

(1)根據(jù)題意,應滿足兩個條件: △>0,二次項系數(shù)不等于0,顯然此解答漏掉了一個條件;(2)利用根與系數(shù)的關(guān)系求得字母的值后,還要注意檢驗原方程是否有實數(shù)根.

上述解答有錯誤.(1)若方程有兩個不相等的實數(shù)根,則方程首先滿足是一元二次方程,∴a2≠0且滿足Δ=(2a-1)2-4a2>0,∴a<a≠0.

 (2)不存在這樣的a.
∵方程的兩個實數(shù)根 ,互為相反數(shù),
,
解得a=,
經(jīng)檢驗a=是方程的根.
∵(1)中求得方程有兩個不相等實數(shù)根,
a的取值范圍是a<且a≠0,
a (不符合題意).
所以不存在這樣的a值,使方程的兩個實數(shù)根互為相反數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.

(1)在圖1中以格點為頂點的畫一個面積為5的等腰直角三角形;

(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2,

(3)如圖3,點A,B,C是格點,則∠ABC= ;

(4)在圖4中畫出△ABC(點C是格點),使△ABC為等腰三角形(畫一個).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面

(2)若這個輸水管道有水部分的水面寬AB=16 cm,水面最深地方的高度為4 cm,求這個圓形截面的半徑

(3)在(2)的條件下,小明把一只寬12 cm的方形小木船放在修好后的圓柱形水管里,已知船高出水面13 cm,問此小船能順利通過這個管道嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西瓜經(jīng)營戶以2/千克的價格購進一批小型西瓜,以3/千克的價格出售,每天可售出200千克.為了促銷,該經(jīng)營戶決定降價銷售.經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,為了減少庫存,該經(jīng)營戶要想每天盈利200元,應將每千克小型西瓜的售價降低(  )元.

A.0.2或0.3

B.0.4

C.0.3

D.0.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在等腰直角ABC中,∠C=90°AC=BC=4,DBC上一點,CD=1,點PAB邊上一動點,則PC+PD的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=60°DBC上一點,過點DDEABE
1)連接AD,取AD中點F,連接CFCE,FE,判斷CEF的形狀并說明理由
2)若BD=CD,將BED繞著點D逆時針旋轉(zhuǎn)0n180),當點B落在RtABC的邊上時,求出n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請回答下列問題:

12317000用科學記數(shù)法表示是_______

22.5678精確到百分位的近似數(shù)是________

3)近似數(shù)精確到_______位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將長方形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上點F處,折痕為BE,再沿過點E的直線折疊,使點D落在BE邊上點D’處,折痕為EG,展平紙片,則圖中∠FEG= ______ °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC的中點,DEAB,DFAC,垂足分別是E、F,BE=CF.

求證:(1BDE≌△CDF;

2ADABC的角平分線.

查看答案和解析>>

同步練習冊答案