如圖,直線AB、CD相交于點(diǎn)O,已知:∠AOC=70°,OE把∠BOD分成兩部分,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

解:∵∠AOC=70°,
∴∠BOD=∠AOC=70°,
∵∠BOE:∠EOD=2:3,
∴∠BOE=×70°=28°,
∴∠AOE=180°-28°=152°.
分析:根據(jù)對(duì)頂角相等求出∠BOD的度數(shù),再根據(jù)∠BOE:∠EOD=2:3求出∠BOE的度數(shù),然后利用互為鄰補(bǔ)角的兩個(gè)角的和等于180°即可求出∠AOE的度數(shù).
點(diǎn)評(píng):本題主要利用對(duì)頂角相等的性質(zhì)和互為鄰補(bǔ)角的兩個(gè)角的和等于180°求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點(diǎn)O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請(qǐng)你認(rèn)真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對(duì)頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點(diǎn),EO⊥CD,垂足為O點(diǎn),若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案