【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,過點A作EA⊥CA交DB的延長線于點E,若AB=3,BC=4,則 的值為 .
【答案】
【解析】解:作BH⊥OA于H,如圖,
∵四邊形ABCD為矩形,
∴OA=OC=OB,∠ABC=90°,
在Rt△ABC中,AC= =5,
∴AO=OB= ,
∵ BHAC= ABBC,
∴BH= = ,
在Rt△OBH中,OH= = = ,
∵EA⊥CA,
∴BH∥AE,
∴△OBH∽△OEA,
∴ = ,
∴ = = = .
所以答案是 .
【考點精析】通過靈活運用矩形的性質(zhì)和相似三角形的判定與性質(zhì),掌握矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ ABC、∠ ACB的平分線交于點O。
(1)若∠ABC=40°,∠ ACB=50°,則∠BOC=_______
(2)若∠ABC+∠ ACB=lO0°,則∠BOC="________"
(3)若∠A=70°,則∠BOC=_________
(4)若∠BOC=140°,則∠A=________
(5)你能發(fā)現(xiàn)∠ BOC與∠ A之間有什么數(shù)量關(guān)系嗎?寫出并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項式及叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等問題.
例如:分解因式;求代數(shù)式的最小值,.可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式:_______.
(2)當(dāng)為何值時,多項式有最大值?并求出這個最大值.
(3)利用配方法,嘗試解方程,并求出,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學(xué)生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為 ,表示“D等級”的扇形的圓心角為 度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程組的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)化簡∣a-3∣+∣a+2∣;
(3)在a的取值范圍內(nèi),m是最大的整數(shù),n是最小的整數(shù),求(m+n)m-n的值;
(4)在a的取值范圍內(nèi),當(dāng)a取何整數(shù)時,不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用課余時間回收廢品,將賣得的錢去購買5本大小不同的兩種筆記本,要求共花錢不超過28元,且購買的筆記本的總頁數(shù)不低于340頁,兩種筆記本的價格和頁數(shù)如下表.為了節(jié)約資金,小明應(yīng)選擇哪一種購買方案?請說明理由.
大筆記本 | 小筆記本 | |
價格(元/本) | 6 | 5 |
頁數(shù)(頁/本) | 100 | 60 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點D,E,連接DE和DB,過點E作EF⊥AB,垂足為F,交BD于點P.
(1)求證:AD=DE;
(2)若CE=2,求線段CD的長;
(3)在(2)的條件下,求△DPE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.
A.如圖,DE為△ABC的中位線,點F為DE上一點,且∠AFB=90°,若AB=8,BC=10,則EF的長為 .
B.小智同學(xué)在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?4.8(不考慮身高因素),則大雁塔市約為米.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com