正方形ABCD的邊長為2cm,E是BC的中點,以A為圓心,數(shù)學公式cm為半徑作圓,則點B在圓________,E點在圓________,C點在圓________,D點在圓________.

內    上    外    內
分析:在直角△ABE中根據(jù)勾股定理得到AE=cm,因而點E在圓上;AB=AD=2cmcm,因而點B、D在圓內,AC=2,則點C在圓外.
解答:∵正方形ABCD的邊長為2cm,E是BC的中點,A為圓心,cm為半徑;
則AE=cm,AB=AD=2cmcm,AC=2,
∴點B在圓內,E點在圓上,C點在圓外,D點在圓內.
點評:本題考查了對點與圓的位置關系的判斷.設點到圓心的距離為d,則當d=R時,點在圓上;當d>R時,點在圓外;當d<R時,點在圓內.判斷這三點與圓的位置關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)附加題
如圖所示,正方形ABCD的邊長為7,AE=BF=CG=DH=3,甲、乙兩只螞蟻同時從A點出發(fā),甲螞蟻以每秒
3
5
的速度沿路線AE→EF→FG→GH→HE→EB→BC→CD→DA循環(huán)爬行;乙螞蟻以每秒
4
5
的速度沿路線AH→HG→GF→FE→EH→HD→DC→CB→BA循環(huán)爬行.那么出發(fā)后兩只螞蟻在第
 
s第一次相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD的邊長為4,P為對角線AC上一點,且CP=3
2
,PE⊥PB交CD于點E,則PE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

正方形ABCD的邊長為4,P是BC上一動點,QP⊥AP交DC于Q,設PB=x,△ADQ的面積為y.
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)(1)中函數(shù)若是一次函數(shù),求出直線與兩坐標軸圍成的三角形面積;若是二次函數(shù),請利用配方法求出拋物線的對稱軸和頂點坐標;
(3)畫出這個函數(shù)的圖象;
(4)點P是否存在這樣的位置,使△APB的面積是△ADQ的面積的
23
?若存在,求出BP的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點,DE=5cm.以點A為中心,將△ADE按順時針方向旋轉得△ABF,則點E所經過的路徑長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊長為6,點M在邊DC上,M,N兩點關于對角線AC對稱,若DM=2,則tan∠ADN=
3
2
3
2

查看答案和解析>>

同步練習冊答案