【題目】如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.當(dāng)t為何值時,DP⊥AC?
【答案】(1)見解析;(2)當(dāng)t=5時,DP⊥AC,理由見解析
【解析】
(1)根據(jù)矩形的性質(zhì)可得CD∥AB,根據(jù)平行線的性質(zhì)可得∠DCQ=∠QAP,∠PDC=∠QPA,進而可得判定△APQ∽△CDQ;
(2)首先證明△ADQ∽△ACD,根據(jù)相似三角形的性質(zhì)可得,然后計算出AC長,進而可得AQ長,再證明△AQP∽△ABC,可得,則,再解即可得到t的值.
(1)證明:∵四邊形ABCD是矩形,
∴CD∥AB,
∴∠DCQ=∠QAP,∠PDC=∠QPA,
∴△APQ∽△CDQ;
(2)解:當(dāng)t=5時,DP⊥AC;
∵∠ADC=90°,DP⊥AC,
∴∠AQD=∠AQP=∠ADC=90°,
∵∠DAQ=∠CAD,
∴△ADQ∽△ACD,
∴,
AC=,
則AQ=,
∵∠AQP=∠ABC=90°,∠QAP=∠BAC,
∴△AQP∽△ABC,
∴,
則,
解得:t=5,
即當(dāng)t=5時,DP⊥AC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,補全證明過程及推理依據(jù).
已知:如圖,點E在直線DF上,點B在直線AC上,∠1=∠2,∠3=∠4.
求證∠A=∠F
證明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代換)
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代換)
∴ ∥ ( )
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金堂某養(yǎng)鴨場有1800只鴨準(zhǔn)備對外出售.從中隨機抽取了一部分鴨,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(1)養(yǎng)鴨場隨機共抽取鴨______只,并補全條形統(tǒng)計圖;
(2)請寫出統(tǒng)計的這組數(shù)據(jù)的眾數(shù)為______、中位數(shù)為_______,并求這組數(shù)據(jù)的平均數(shù)(精確到0.01);
(3)根據(jù)樣本數(shù)據(jù),估計這1800只鴨中,質(zhì)量為的約有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是BC邊的中點,連接AE并延長與DC的延長線交于F.
(1)求證:CF=CD;
(2)若AF平分∠BAD,連接DE,試判斷DE與AF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)準(zhǔn)備五一組織社區(qū)內(nèi)老年人去到縣參加采摘節(jié),現(xiàn)有甲、乙兩家旅行社表示對老年人優(yōu)惠,甲旅行社的優(yōu)惠方式為:在原來每人100元的基礎(chǔ)上,每人按照原價的60%收取費用;乙旅行社的優(yōu)惠方式為:在收取一個600元固定團費的基礎(chǔ)上,再額外收取每人40元.設(shè)參加采摘節(jié)的老年人有x人,甲、乙兩家旅行社實際收費為元、元.
(Ⅰ)根據(jù)題意,填寫下表:
老年人數(shù)量(人) | 5 | 10 | 20 | |
甲旅行社收費(元) | 300 | |||
乙旅行社收費)(元) | 800 |
(Ⅱ)求、關(guān)于x的函數(shù)關(guān)系式(不用寫出自變量的取值范圍)?
(Ⅲ)如果,選擇哪家旅行社合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)交于點, .
(1)分別求出反比例函數(shù)和一次函數(shù)的表達式;
(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線、交于點,順次聯(lián)結(jié)ABCD各邊中點得到的一個新的四邊形,如果添加下列四個條件中的一個條件:①⊥;②;③;④,可以使這個新的四邊形成為矩形,那么這樣的條件個數(shù)是()
A. 1個;B. 2個;
C. 3個;D. 4個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
⑴求證:AC=CD.
⑵若OB=2,求BH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com