【題目】如圖,小王在長江邊某瞭望臺(tái)D處,測得江面上的漁船A的俯角為40°.DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長BC10米,則此時(shí)AB的長約為(參考數(shù)據(jù):sin40°0.64,cos40°0.77,tan40°0.84)(  )

A. 5.1 B. 6.3 C. 7.1 D. 9.2

【答案】A

【解析】如圖,延長DEAB延長線于點(diǎn)P,作CQ⊥AP于點(diǎn)Q,

∵CE∥AP,

∴DP⊥AP,

∴四邊形CEPQ為矩形,

∴CE=PQ=2,CQ=PE,

i=,

∴設(shè)CQ=4x、BQ=3x,

BQ +CQ=BC可得(4x)+(3x)=102,

解得:x=2x=2(),

CQ=PE=8,BQ=6,

∴DP=DE+PE=11,

RtADP,AP=13.1,

∴AB=APBQPQ=13.162=5.1,

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線AB:y= x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B.直線CD:y=﹣ x﹣1與直線AB相交于點(diǎn)M,交x軸于點(diǎn)C,交y軸于點(diǎn)D.

(1)直接寫出點(diǎn)B和點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是射線MD上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)是x,△PBM的面積是S,求S與x之間的函數(shù)關(guān)系;
(3)當(dāng)S=20時(shí),平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)E,使以點(diǎn)B、E、P、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2 0162,b2 015×2 017,則( )

A. abB. abC. abD. ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2y﹣y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,邊長為4,點(diǎn)G在邊BC上運(yùn)動(dòng),DE⊥AG于E,BF∥DE交AG于點(diǎn)F,在運(yùn)動(dòng)過程中存在BF+EF的最小值,則這個(gè)最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABM=45°,AMBM,垂足為M,點(diǎn)C是BM延長線上一點(diǎn),連接AC.

(1)如圖1,若AB=3,BC=5,求AC的長;

(2)如圖2,點(diǎn)D是線段AM上一點(diǎn),MD=MC,點(diǎn)E是ABC外一點(diǎn),EC=AC,連接ED并延長交BC于點(diǎn)F,且點(diǎn)F是線段BC的中點(diǎn),求證:BDF=CEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的外角和等于(
A.180°
B.360°
C.540°
D.720°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x|﹣2的圖象與性質(zhì)進(jìn)行了探究.
下面是小華的探究過程,請(qǐng)補(bǔ)充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);
如表是y與x的幾組對(duì)應(yīng)值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

①m=
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n=;
(2)①如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(3)該函數(shù)的最小值為
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點(diǎn),當(dāng)y1≥y時(shí)x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)兩點(diǎn)P1(x1 , y1)、P2(x2 , y2),其兩點(diǎn)間的距離
同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),試求A、B兩點(diǎn)間的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的縱坐標(biāo)為﹣1,試求A、B兩點(diǎn)間的距離;
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;
(4)平面直角坐標(biāo)中,在x軸上找一點(diǎn)P,使PD+PF的長度最短,求出點(diǎn)P的坐標(biāo)以及PD+PF的最短長度.

查看答案和解析>>

同步練習(xí)冊(cè)答案