【題目】如圖,在平面直角坐角系中,點是原點,點、在坐標軸上,連接,,點軸上,且點是線段的垂直平分線上一點.

1)求點的坐標;

2)點從點出發(fā)以每秒2個單位長度的速度向終點運動(點不與點重合),連接,若點的運動時間為秒,的面積為,用含的式子表示;

3)在(2)的條件下,過點垂直軸,交,若,求點的坐標.

【答案】1;(2S=;(3

【解析】

(1)依據(jù)三角形內(nèi)角和定理、線段中垂線的性質(zhì)、等腰三角形等邊對等角,得到,再依據(jù)含30度的直角三角形的性質(zhì)得到,最終建立BCOC的關(guān)系,即可求出OC的長和C的坐標;

N,由題意得,則,由直角三角形的性質(zhì)得出,由三角形面積公式即可得出答案;

3)先求證,再分點與點重合、點上兩種情況討論,對于第2種情況,先證明,再依據(jù)30度的直角三角形的性質(zhì),得到,再證明,依據(jù)等腰三角形三線合一的性質(zhì)得到,最后得到,即可寫出點的坐標.

解:(1,

是線段的垂直平分線上一點

2,

過點N,

3軸,

①當點與點重合時,

②當點上時,連接

,

,

又∵,

,

,

是等邊三角形,

,

,

.

綜上所述:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,拋物線y=ax-2+M交于AB,C,D四點,點ABx軸上,點C坐標為(0,-2).

(1)求a值及A,B兩點坐標;

(2)點Pm,n)是拋物線上的動點,當CPD為銳角時,請求出m的取值范圍;

(3)點E是拋物線的頂點,M沿CD所在直線平移,點C,D的對應點分別為點C′,D,順次連接A,C′,D′,E四點,四邊形ACDE(只要考慮凸四邊形)的周長是否存在最小值?若存在,請求出此時圓心M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架梯子AC長2.5米,斜靠在一面墻上,梯子底端離墻0.7米.

(1)這個梯子的頂端距地面有多高?

(2)如果梯子的頂端下滑了0.4米到A′,那么梯子的底端在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y= x+2與x軸,y軸分別相交于A、B兩點,與反比例函數(shù)y= (x>0)的圖象相交于點C(2,3).點P是反比例函數(shù)圖象上一點,作PE垂直x軸于E,若以P、O、E為頂點的三角形與AOB相似,則點P的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若∠A=15°,AB=BC=CD=DE=EF,則∠DEF等于__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90OAB=AC,直線MN經(jīng)過點ABDMN于點D,CEMN于點E.

(1)試判斷線段DE、BDCE之間的數(shù)量關(guān)系,并說明理由;

(2)當直線MN運動到如圖2所示位置時,其余條件不變,判斷線段DE、BDCE之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AC平分∠BAD,CEABE,且∠B+D=180°,

求證:AE=AD+BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點E,F在邊AB上,將邊AC沿CE翻折,使點A落在AB上的點D處,再將邊BC沿CF翻折,使點B落在CD的延長線上的點B'處.

1)求∠ECF的度數(shù);

2)若CE4,B'F1,求線段BC的長和ABC的面積.

查看答案和解析>>

同步練習冊答案