拋物線軸于兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

【小題1】寫出拋物線的對稱軸及、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
【小題2】連接并以為直徑作⊙,當(dāng)時(shí),請判斷⊙是否經(jīng)過點(diǎn),并說明理由;
【小題3】在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、、為頂點(diǎn)的三角形相似?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
p;【答案】
【小題1】過點(diǎn)C作CH⊥軸,垂足為H
∵在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2   ∴OB=4,OA=
由折疊知,∠COB=300,OC=OA=
∴∠COH=600,OH=,CH=3   ∴C點(diǎn)坐標(biāo)為(,3)
【小題2】∵拋物線≠0)經(jīng)過C(,3)、A(,0)兩點(diǎn)
     解得:
∴此拋物線的解析式為:   (7分)
【小題3】存在. 因?yàn)?img src="http://thumb.1010pic.com/pic1/imagenew2/czsx/5/67105.png" >的頂點(diǎn)坐標(biāo)為(,3)即為點(diǎn)C,MP⊥軸,設(shè)垂足為N,PN=,因?yàn)椤螧OA=300,所以O(shè)N= , ∴P(
作PQ⊥CD,垂足為Q,ME⊥CD,垂足為E

代入得:
∴ M(,),E(,
同理:Q(,),D(,1)
要使四邊形CDPM為等腰梯形,只需CE=QD
,解得:,(舍)
∴ P點(diǎn)坐標(biāo)為(
∴ 存在滿足條件的點(diǎn)P,使得四邊形CDPM為等腰梯形,此時(shí)P點(diǎn)的坐為(,)     (12分)解析:
p;【解析】略
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市黃集二中九年級上學(xué)期聯(lián)考數(shù)學(xué)卷 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

【小題1】(1)寫出拋物線的對稱軸及兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
【小題2】(2)連接并以為直徑作⊙,當(dāng)時(shí),請判斷⊙是否經(jīng)過點(diǎn),并說明理由;
【小題3】(3)在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、、為頂點(diǎn)的三角形相似?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(帶解析) 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),已知拋物線的對稱軸為,,
(1)求二次函數(shù)的解析式;
在拋物線對稱軸上是否存在一點(diǎn),使點(diǎn)、兩點(diǎn)距離之差最大?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由;
平行于軸的一條直線交拋物線于兩點(diǎn),若以為直徑的圓恰好與軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(解析版) 題型:解答題

拋物線軸于兩點(diǎn),交軸于點(diǎn),已知拋物線的對稱軸為

,,

(1)求二次函數(shù)的解析式;

(2)   在拋物線對稱軸上是否存在一點(diǎn),使點(diǎn)、兩點(diǎn)距離之差最大?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由;

(3)   平行于軸的一條直線交拋物線于兩點(diǎn),若以為直徑的圓恰好與軸相切,求此圓的半徑.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市九年級上學(xué)期聯(lián)考數(shù)學(xué)卷 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

1.(1)寫出拋物線的對稱軸及、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

2.(2)連接并以為直徑作⊙,當(dāng)時(shí),請判斷⊙是否經(jīng)過點(diǎn),并說明理由;

3.(3)在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、為頂點(diǎn)的三角形相似?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案