【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D0,4),B6,0).若反比例函數(shù)y=x0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫出不等式k2x+b0的解集.

【答案】(1)反比例函數(shù)解析式為y=;直線EF的解析式為y=x+5;(2;(3 .

【解析】試題分析:(1)先利用矩形的性質(zhì)確定C點(diǎn)坐標(biāo)(6,4),再確定A點(diǎn)坐標(biāo)為(3,2),則根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k1=6,即反比例函數(shù)解析式為y=;然后利用反比例函數(shù)解析式確定F點(diǎn)的坐標(biāo)為(6,1),E點(diǎn)坐標(biāo)為(4),再利用待定系數(shù)法求直線EF的解析式;

2)利用△OEF的面積=S矩形BCDO-SODE-SOBF-SCEF進(jìn)行計(jì)算;

3)觀察函數(shù)圖象得到當(dāng)x6時(shí),一次函數(shù)圖象都在反比例函數(shù)圖象上方,即k2x+b

試題解析:(1四邊形DOBC是矩形,且D04),B6,0),

∴C點(diǎn)坐標(biāo)為(64),

點(diǎn)A為線段OC的中點(diǎn),

∴A點(diǎn)坐標(biāo)為(3,2),

∴k1=3×2=6

反比例函數(shù)解析式為y=;

x=6代入y=y=1,則F點(diǎn)的坐標(biāo)為(6,1);

y=4代入y=x=,則E點(diǎn)坐標(biāo)為(,4),

F6,1)、E,4)代入y=k2x+b

,

解得

直線EF的解析式為y=-x+5;

2△OEF的面積=S矩形BCDO-SODE-SOBF-SCEF

=4×6-×4×-×6×1-×6-×4-1

=

3)由圖象得:不等式k2x+b-0的解集為x6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為D,連接AD,BD

1)依據(jù)題意補(bǔ)全圖形;

2)當(dāng)∠PAC等于多少度時(shí),ADBC?請(qǐng)說明理由;

3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);

4)探索:線段CE,AEBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船以18海里/時(shí)的速度由西向東方向航行,行至A處測(cè)得燈塔P在它的北偏東60°的方向上,繼續(xù)向東行駛20分鐘后,到達(dá)B處又測(cè)得燈塔P在它的北偏東45°方向上,求輪船與燈塔的最短距離.(精確到0.1, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龜兔賽跑的故事同學(xué)們都非常熟悉圖中的線段OD和折線OABC表示龜兔賽跑時(shí)路程與時(shí)間的關(guān)系請(qǐng)你根據(jù)圖中給出的信息,解決下列問題

(1)填空:折線OABC表示賽跑過程中 的路程與時(shí)間的關(guān)系,線段OD表示賽跑過程中 的路程與時(shí)間的關(guān)系賽跑的全程是

(2)兔子在起初每分鐘跑 烏龜每分鐘爬

(3)烏龜用了 分鐘追上了正在睡覺的兔子

(4)兔子醒來,以48千米/時(shí)的速度跑向終點(diǎn)結(jié)果還是比烏龜晚到了05分鐘,請(qǐng)你算算兔子中間停下睡覺用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是等腰直角三角形,,,點(diǎn)P的邊上沿路徑移動(dòng),過點(diǎn)P于點(diǎn)D,設(shè),的面積為(當(dāng)點(diǎn)P與點(diǎn)B或點(diǎn)C重合時(shí),y的值為0).

琪琪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是琪琪的探究過程,請(qǐng)補(bǔ)充完整:

1)自變量x的取值范圍是______________________;

2)通過取點(diǎn)、畫圖、測(cè)量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

y/

0

m

2

n

0

請(qǐng)直接寫出 ;

3)在圖2所示的平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖像;并結(jié)合畫出的函數(shù)圖像,解決問題:當(dāng)的面積為1時(shí),請(qǐng)直接寫出的長(zhǎng)度(數(shù)值保留一位小數(shù)).

4)根據(jù)上述探究過程,試寫出的面積為y的長(zhǎng)度x cm之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,BAD=45°,AD與BE交于點(diǎn)F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P表示廣場(chǎng)上的一盞照明燈.

(1)請(qǐng)你在圖中畫出小敏在照明燈P照射下的影子(用線段表示);

(2)若小麗到燈柱MO的距離為4.5米,照明燈P到燈柱的距離為1.5米,小麗目測(cè)照明燈P的仰角為55°,她的目高QB為1.6米,試求照明燈P到地面的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求b、c的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.

3)當(dāng)點(diǎn)PA、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求Cm之間的函數(shù)關(guān)系式,并寫出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案