某校課程安排中,各班每天下午安排三節(jié)課.
(1)某班級星期一下午安排了數(shù)學(xué)、美術(shù)、音樂課各一節(jié),通過畫樹狀圖求出把數(shù)學(xué)課安排在最后一節(jié)的概率;
(2)某天下午,初三(1)班安排了數(shù)學(xué)、社會、音樂課各一節(jié),初三(2)班安排了數(shù)學(xué)、美術(shù)、體育課各一節(jié).已知這兩個班的數(shù)學(xué)課有同一個老師擔(dān)任,其他課由另外四位老師擔(dān)任. 通過畫樹狀圖或列表格求這兩個班數(shù)學(xué)課不相沖突的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
.某校中午學(xué)生用餐比較擁擠,為建議學(xué)校分年級錯時用餐,李老師帶領(lǐng)數(shù)學(xué)學(xué)習(xí)小組在某天隨機(jī)調(diào)查了部分學(xué)生,統(tǒng)計(jì)了他們從下課到就餐結(jié)束所用的時間,并繪制成統(tǒng)計(jì)表和如圖所示的不完整統(tǒng)計(jì)圖.
根據(jù)以上提供的信息,解答下列問題:
(1)下表中 , , ,補(bǔ)全頻數(shù)分布直方圖;
(2)在調(diào)查人數(shù)里,從下課到就餐結(jié)束所用時間不少于20min的共有 人.
(3)此次調(diào)查中,中位數(shù)所在的時間段是 min 32
時間分段/min | 頻(人)數(shù) | 百分比 |
10≤x<15 | 8 | 20% |
15≤x<20 | 14 | a |
20≤x<25 | 10 | 25% |
25≤x<30 | b | 12.50% |
30≤x<35 | 3 | 7.50% |
合計(jì) | c | 100% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC的3個頂點(diǎn)都在5×5的網(wǎng)格(每個小正方形的邊長均為1
個單位長度)的格點(diǎn)上,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)到△的位置,
且點(diǎn)、仍落在格點(diǎn)上,則線段AB掃過的圖形面積是 平
方單位。(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(改編)通過折紙可以計(jì)算某些三角函數(shù)值,如圖,將所示的矩形紙片ABCD沿過點(diǎn)B的直線折疊,使點(diǎn)A落在BC上的點(diǎn)E處,還原后,再沿過點(diǎn)E的直線折疊,使點(diǎn)A落在BC上的點(diǎn)F處,這樣就可以求出67.5°的角的正切值是( )
A.+1 B. +1 C. 2.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,點(diǎn)E,F分別在BC,CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)B`處,又將△CEF沿EF折疊,使點(diǎn)C落在直線EB`與AD的交點(diǎn)C`處.則BC∶AB的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
六個面上分別標(biāo)有1,1,2,3,4,5六個數(shù)字的均勻立方體的表現(xiàn)展開圖如圖所示,擲這個立方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).則擲兩次得到的坐標(biāo)落在拋物線y=2x2-x上的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列各式計(jì)算結(jié)果正確的是 ( )
A、a+a=a2 B、(3a)2=6a2 C、(a+1)2=a2+1 D、a ·a=a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果一條拋物線與軸有兩個交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂 點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是 三角形;
(2)若拋物線的“拋物線三角形”是直角三角形,求的值;
(3)若拋物線與x軸交與原點(diǎn)O和點(diǎn)B,拋物線的頂點(diǎn)坐標(biāo)為A,△是的“拋物線三角形”,是否存在以原點(diǎn)為對稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com