如圖,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)E為AC的中點(diǎn),連接DE,求△CDE的周長(zhǎng)。
14
【解析】
試題分析:根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得AD⊥BC,CD=BD,再根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可得DE=CE=AC,然后根據(jù)三角形的周長(zhǎng)公式列式計(jì)算即可得解.
∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,CD=BD=BC=4,
∵點(diǎn)E為AC的中點(diǎn),
∴DE=CE=AC=5,
∴△CDE的周長(zhǎng)=CD+DE+CE=4+5+5=14.
考點(diǎn):本題考查了直角三角形斜邊上的中線(xiàn)等于斜邊的一半的性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是掌握好等腰三角形三線(xiàn)合一的性質(zhì),準(zhǔn)確識(shí)圖是解決問(wèn)題的突破口。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com