已知,如圖,點(diǎn)C、E、B、F在同一直線(xiàn)上,AC∥DF,AC=DF,CE=BF.
(1)△ACB與△DFE全等嗎?為什么?
(2)AB與DE平行嗎?為什么?
分析:(1)根據(jù)平行線(xiàn)性質(zhì)推出∠C=∠F,求出BC=EF,根據(jù)SAS證出糧三角形全等即可;
(2)根據(jù)全等三角形性質(zhì)得出∠ABC=∠DEF,根據(jù)平行線(xiàn)的判定推出即可.
解答:解:(1)△ACB和△DEF全等,
理由是:∵CE=BF,
∴CE+BE=BF+BE,
∴BC=EF,
∵AC∥DF,
∴∠C=∠F,
∵在△ACB和△DFE中
AC=DF
∠C=∠F
BC=EF

∴△ACB≌△DFE(SAS),

(2)AB∥DE,
理由是:∵△ACB≌△DFE,
∴∠ABC=∠DEF,
∴AB∥DE.
點(diǎn)評(píng):本題考查了平行線(xiàn)的性質(zhì)和判定,全等三角形的性質(zhì)和判定,等式的性質(zhì)的應(yīng)用,關(guān)鍵是推出△ACB≌△DFE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知:如圖,點(diǎn)O為?ABCD的對(duì)角線(xiàn)BD的中點(diǎn),直線(xiàn)EF經(jīng)過(guò)點(diǎn)O,分別交BA、DC的延長(zhǎng)線(xiàn)于點(diǎn)E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點(diǎn)C(-
2
5
,
4
5
)
,E為直徑精英家教網(wǎng)OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合).EF⊥AB于點(diǎn)F,交y軸于點(diǎn)G.設(shè)點(diǎn)E的橫坐標(biāo)為x,△BGF的面積為y.
(1)求直線(xiàn)AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)A、B、C、D在同一條直線(xiàn)上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點(diǎn)O.
(1)求證:∠ACE=∠DBF;
(2)若點(diǎn)B是AC的中點(diǎn),∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm,PT切⊙O于T,過(guò)P點(diǎn)作⊙O的割線(xiàn)PAB,(PB>PA).設(shè)PA=x,PB=y,求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點(diǎn)E、A、C在同一條直線(xiàn)上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案