在梯形ABCD中,AD∥BC,對角線AC=6cm,BD=8cm,且AC⊥BD.則BC+AD=________cm.

10
分析:此題中要作輔助線:平移對角線,即過點D作DE∥AC交BC的延長線于E,則DE⊥BD,DE=AC=8.根據(jù)勾股定理得BE=10,即為BC+AD的值.
解答:解:過點D作DE∥AC交BC的延長線于E,
∵AD∥BC,
∴四邊形ACED是平行四邊形,
∴AD=CE,
∵AC⊥BD,
∴BD⊥DE,
∴在Rt△BDE中,AC=6cm,BD=8cm,由勾股定理可得:BE=10,
∴BC+AD=BC+CE=BE=10cm,
故答案為:10.
點評:本題考查了平行四邊形的判定和性質(zhì)以及勾股定理的運(yùn)用,題目的關(guān)鍵是正確的作出輔助線構(gòu)造直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,給出下面三個論斷:①AD=BC;②DE=CE;③AE=BE.請你以其中的兩個論斷為條件,填入“已知”欄中,以一個論斷作為結(jié)論,填入“求證”欄中,使之成為一個正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點A作AE∥DB交CB的延長線于點E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點P是下底BC邊上的一個動點,從B向C以2cm/s的速度運(yùn)動,到達(dá)點C時停止運(yùn)動,設(shè)運(yùn)動的時間為t(s).
(1)求BC的長;
(2)當(dāng)t為何值時,四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時,以A、B、P為頂點的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案