11、已知,如圖,AD=AC,BD=BC,O為AB上一點,那么,圖中共有
3
對全等三角形.
分析:由已知條件,結合圖形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3對.找尋時要由易到難,逐個驗證.
解答:解:∵AD=AC,BD=BC,AB=AB,
∴△ADB≌△ACB;
∴∠CAO=∠DAO,∠CBO=∠DBO,
∵AD=AC,BD=BC,OA=OA,OB=OB
∴△ACO≌△ADO,△CBO≌△DBO.
∴圖中共有3對全等三角形.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,AD∥BC,ED∥BF,且AF=CE.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知,如圖,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AD=BC,AC=BD.試判斷OD、OC的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,請你說明下列結論成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)題意填空:
已知,如圖,AD∥BC,∠BAD=∠BCD,求證:AB∥CD.
證明:∵AD∥BC(已知)
∴∠1=
∠2(兩直線平行,內(nèi)錯角相等),
∠2(兩直線平行,內(nèi)錯角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性質)
(等式的性質)

即:∠3=∠4
AB∥CD(內(nèi)錯角相等,兩直線平行)
AB∥CD(內(nèi)錯角相等,兩直線平行)

查看答案和解析>>

同步練習冊答案