(2006•鄂爾多斯)高為12米的教學(xué)樓ED前有一棵大樹AB,如圖(a).
(1)某一時(shí)刻測(cè)得大樹AB、教學(xué)樓ED在陽(yáng)光下的投影長(zhǎng)分別是BC=2.5米,DF=7.5米,求大樹AB的高度;
(2)現(xiàn)有皮尺和高為h米的測(cè)角儀,請(qǐng)你設(shè)計(jì)另一種測(cè)量大樹AB高度的方案,要求:
①在圖(b)中,畫出你設(shè)計(jì)的測(cè)量方案示意圖,并將應(yīng)測(cè)量的數(shù)據(jù)標(biāo)記在圖上(長(zhǎng)度用字母m,n …表示,角度用希臘字母α,β …表示);
②根據(jù)你所畫出的示意圖和標(biāo)注的數(shù)據(jù),求出大樹的高度.(用字母表示)

【答案】分析:此題考查了學(xué)生學(xué)以致用的能力,考查了學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力;解此題的關(guān)鍵是利用相似三角形的性質(zhì),相似三角形的對(duì)應(yīng)邊成比例求解.解題時(shí)還要注意認(rèn)識(shí)圖形.
解答:解:(1)連接AC,EF,則△ABC∽△EDF,
,(2分)
∴AB=4,
即大樹AB高是4米.(3分)

(2)解法一:
①如圖(b)(標(biāo)注m,α,畫草圖也可給相同的分);(5分)
②在Rt△CMA中,∵AM=CMtanα=mtanα,(6分)
∴AB=mtanα+h.(7分)
解法二:
①如圖(c)(標(biāo)注m,α,β,畫草圖也可給相同的分);(5分)
②AMcotα-AMcotβ=m,
∴AM=,(6分)
∴AB=.(7分)
點(diǎn)評(píng):本題只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出樹的高度,體現(xiàn)了方程的思想.還要注意學(xué)以致用,注意知識(shí)的積累.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年甘肅省甘南州合作一中高中民族班、實(shí)驗(yàn)班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案