【題目】某校七年級(jí)為了表彰“數(shù)學(xué)素養(yǎng)水平測試”中表現(xiàn)優(yōu)秀的同學(xué),準(zhǔn)備用480元錢購進(jìn)筆記本作為獎(jiǎng)品.若種筆記本買20本,本筆記本買30本,則錢還缺40元;若種筆記本買30本,種筆記本買20本,則錢恰好用完.
(1)求,兩種筆記本的單價(jià).
(2)由于實(shí)際需要,需要增加購買單價(jià)為6元的種筆記本若干本.若購買,,三種筆記本共60本,錢恰好全部用完.任意兩種筆記本之間的數(shù)量相差小于15本,則種筆記本購買了__________本.(直接寫出答案)
【答案】(1)、兩種筆記本的單價(jià)分別為8元,12元;(2)24,26,28.
【解析】
(1)設(shè)、單價(jià)分別為,,根據(jù)題意列出方程組即可求解;
(2)設(shè)種筆記本購買本,種筆記本購買本,得到方程組,根據(jù)任意兩種筆記本之間的數(shù)量相差小于15本,得到b的取值,故可求解.
解:(1)設(shè)、單價(jià)分別為,;
,解得,.
(2)設(shè)種筆記本購買本,種筆記本購買本,
故,解得,故
∵任意兩種筆記本之間的數(shù)量相差小于15本,
即,把、=2b,代入求得不等式組的解集為
可知:,
∴b可以為12,13,14,
對(duì)應(yīng)的c為24,26,28.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)課上,老師出示了這樣一個(gè)問題讓學(xué)生探究:
已知:如圖在△ABC中,點(diǎn)D 是BA邊延長線上一動(dòng)點(diǎn),點(diǎn)F 在BC上,且,連接DF交AC于點(diǎn)E .
(1)如圖1,當(dāng)點(diǎn)E恰為DF的中點(diǎn)時(shí),請(qǐng)求出的值;
(2)如圖2,當(dāng)時(shí),請(qǐng)求出的值(用含a的代數(shù)式表示).
思考片刻后,同學(xué)們紛紛表達(dá)自己的想法:
甲:過點(diǎn)F作FG∥AB交AC于點(diǎn)G,構(gòu)造相似三角形解決問題;
乙:過點(diǎn)F作FG∥AC交AB于點(diǎn)G,構(gòu)造相似三角形解決問題;
丙:過點(diǎn)D作DG∥BC交CA延長線于點(diǎn)G,構(gòu)造相似三角形解決問題;
老師說:“這三位同學(xué)的想法都可以” .
請(qǐng)參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一枚質(zhì)地均勻的正二十面體形狀的骰子,其中的1個(gè)面標(biāo)有“1”,2個(gè)面標(biāo)有“2”, 3個(gè)面標(biāo)有“3”,4個(gè)面標(biāo)有“4”,5個(gè)面標(biāo)有“5”,其余的面標(biāo)有“6”.將這枚骰子擲出后:
(1)數(shù)字幾朝上的概率最?
(2)奇數(shù)面朝上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線m∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線m于點(diǎn)E,垂足為點(diǎn)F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)點(diǎn)D是AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)和B(0,b)滿足(a﹣4)2+|b﹣6|=0,分別過點(diǎn)A,B作x軸.y軸的垂線交于點(diǎn)C,如圖所示.點(diǎn)P從原點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿著O→B→C→A的路線移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)寫出A,B,C三點(diǎn)的坐標(biāo):A ,B ,C ;
(2)當(dāng)t=14秒時(shí),求△OAP的面積.
(3)點(diǎn)P在運(yùn)動(dòng)過程中,當(dāng)△OAP的面積為6時(shí),求t的值及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長為1cm,平移圖中的△ABC,使點(diǎn)B移到點(diǎn)B1的位置.
(1)利用方格和直尺畫圖
①畫出平移后的△A1B1C1
②畫出AB邊上的中線CD;
③畫出BC邊上的高AH;
(2)線段A1C1與線段AC的位置關(guān)系與數(shù)量關(guān)系為 ;
(3)△A1B1C1的面積為 cm2;△BCD的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(一)知識(shí)鏈接
若點(diǎn)M,N在數(shù)軸上,且M,N代表的實(shí)數(shù)分別是a,b,則線段MN的長度可表示為 .
(二)解決問題
如圖,將一個(gè)三角板放置在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,點(diǎn)B,C的坐標(biāo)分別為(-2,-4),(-4,0).
(1)求點(diǎn)A的坐標(biāo)及直線AB的表達(dá)式;
(2)若P是x軸上一點(diǎn),且S△ABP=6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,與,分別相交于點(diǎn),,且,交直線于點(diǎn).
(1)若,求的度數(shù);
(2)若,,,求直線與的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com