【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角是 ;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當∠AOD=x°時,請直接寫出∠DOE的度數(shù).
【答案】(1)∠BOE、∠COE;(2)90°;(3)90°.
【解析】
試題分析:(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出結論;
(2)先求出∠COD、∠COE,即可得出∠DOE=90°;
(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.
解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴與∠AOE互補的角是∠BOE、∠COE;
故答案為∠BOE、∠COE;
(2)∵OD、OE分別平分∠AOC、∠BOC,
∴∠COD=∠AOD=36°,∠COE=∠BOE=∠BOC,
∴∠AOC=2×36°=72°,
∴∠BOC=180°﹣72°=108°,
∴∠COE=∠BOC=54°,
∴∠DOE=∠COD+∠COE=90°;
(3)當∠AOD=x°時,∠DOE=90°.
科目:初中數(shù)學 來源: 題型:
【題目】將5570000用科學記數(shù)法表示正確的是( )
A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,C、D是直徑AB同側圓周上的兩點,弧AC的度數(shù)是100°,D為弧BC的中點,動點P在直徑AB上,則PC+PD的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四個命題:①對頂角相等;②內(nèi)錯角相等;③平行于同一條直線的兩條直線互相平行;④如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等。其中真命題的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)填空:點B在數(shù)軸上表示的數(shù)是 ,點C在數(shù)軸上表示的數(shù)是 ;
(2)若線段CD以每秒3個單位的速度向右勻速運動,當點D運動到A時,線段CD與線段AB開始有重疊部分,此時線段CD運動了 秒;
(3)在(2)的條件下,線段CD繼續(xù)向右運動,問再經(jīng)過 秒后,線段CD與線段AB不再有重疊部分;
(4)若線段AB、CD同時從圖中位置出發(fā),線段AB以每秒2個單位的速度向左勻速運動,線段CD仍以每秒3個單位的速度向右勻速運動,點P是線段CD的中點,問運動幾秒時,點P與線段AB兩端點(A或B)的距離為1個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,弦CD∥BM,交AB于點F,且DA=DC,鏈接AC,AD,延長AD交BM地點E.
(1)求證:△ACD是等邊三角形.
(2)連接OE,若DE=2,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com