【題目】大家喜歡玩的幻方游戲,老師精加創(chuàng)新改成了“幻圓”游戲,現(xiàn)在將-1,2,-3,4,5,6,- 7,8分別填入如圖所示的四圈內,使橫、整以及內外兩圈上的4個數(shù)字之和都相等,老師已經(jīng)幫助同學們完成了部分填空,則的值為( )
A.-8或1B.-1或1
C.-1或4D.-6或-3
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:OB、OC、OM、ON是∠AOD內的射線.
(1)如圖1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,則∠MON的度數(shù)為 .
(2)如圖2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM的度數(shù)(用m的式子表示);
(3)如圖3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,當∠BOC在∠AOD內繞著點O以2°/秒的速度逆時針旋轉t秒時,∠AOM和∠DON中的一個角的度數(shù)恰好是另一個角的度數(shù)的兩倍,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路,完成解答過程.
(1)作AD⊥BC于D,設BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長,再計算三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)的點到原點的距離,這是絕對值的幾何意義.進一步地,數(shù)軸上的兩個點,分別用數(shù)表示,那么兩點之間的距離為,反過來,式子的幾何意義是:數(shù)軸上表示數(shù)的點和表示數(shù)的點之間的距離.利用此結論,回答以下問題:
(1)數(shù)軸上表示數(shù)8的點和表示數(shù)3的點之間的距離是_________,數(shù)軸上表示數(shù)的點和表示數(shù)的點之間的距離是__________.
(2)數(shù)軸上點用數(shù)表示,若,那么的值為_________.
(3)數(shù)軸上點用數(shù)表示:
①若,那么的值是________.
②當時,數(shù)的取值范圍是________,這樣的整數(shù)有________個.
③有最小值,最小值是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請根據(jù)上述規(guī)定解答下列問題:
(1)已知關于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在矩形ABCD中.點O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點A,OP與相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、面C相對的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關系.關于銷售單價,日銷售量,日銷售利潤的幾組對應值如下表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y關于x的函數(shù)解析式(不要求寫出x的取值范圍)及m的值;
(2)根據(jù)以上信息,填空:
該產(chǎn)品的成本單價是 元,當銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產(chǎn)品的成本單價應不超過多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com