在△ABC中,D是AB上的一點,在AC上取一點E,要使△ADE與△ABC相似,則滿足這樣條件的E點共有( )
A.0個
B.1個
C.2個
D.無數(shù)個
【答案】分析:本題主要考查相似三角形的判定方法:有兩個對應角相等的三角形相似.△ADE和△ABC中,有公共角∠A,因此只要作∠ADE=∠B或∠ADE=∠C,即可得出兩三角形相似.
解答:解:根據(jù)題意得:當DE∥BC時,△ADE∽△ABC;
當∠ADE=∠C時,由∠A=∠A,可得△ADE∽△ACB.
所以有2個.
故選C.
點評:此題考查了相似三角形的判定.
①有兩個對應角相等的三角形相似;
②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;
③三組對應邊的比相等,則兩個三角形相似.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,DE是AC的中垂線,AE=3cm,△ABD得周長為13cm,則△ABC的周長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是中線,G是重心,
AB
=
a
AD
=
b
,那么
BG
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、在△ABC中,D是邊AB上一點,∠ACD=∠B,AB=9,AD=4,那么AC的長為
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在△ABC中,AD是BC邊上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,則∠C=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

查看答案和解析>>

同步練習冊答案