在,,–3.1416 ,π,,0.161161116……, 中無理數(shù)有 ( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖:在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,與兩坐標(biāo)軸交點(diǎn)為點(diǎn)A和點(diǎn)C,與拋物線交于點(diǎn)B,其中點(diǎn)A(0,2),點(diǎn)B(– 3,1),拋物線與y軸交點(diǎn)D(0,– 2).
(1) 求拋物線的解析式;
(2) 求點(diǎn)C的坐標(biāo);
(3) 在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖15.1,已知拋物線C經(jīng)過原點(diǎn),對稱軸x=-3與拋物線相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且tan∠MON = 3.
(1)求拋物線C的解析式;
(2)將拋物線C繞原點(diǎn)O旋轉(zhuǎn)180º得到拋物線C’,拋物線C’與x軸的另一交點(diǎn)為A,B為拋物線C’上橫向坐標(biāo)為2的點(diǎn).
①若P為線段AB上一動點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過線段OA上的兩點(diǎn)E、F分別作x軸的垂線,交折線 O –B -A于點(diǎn)E1、F1,再分別以線段EE1、FF1為邊作如圖15.2所示的等邊△EE1E2、等邊△FF1F2,點(diǎn)E以每秒1個(gè)單位長度的速度從點(diǎn)O向點(diǎn)A運(yùn)動,點(diǎn)F以每秒1個(gè)單位長度的速度從點(diǎn)A向點(diǎn)O運(yùn)動,當(dāng)△EE1E2有一邊與△FF1F2的某一邊在同一直線上時(shí),求時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
王老師給同學(xué)們布置了這樣一道習(xí)題:一個(gè)數(shù)的算術(shù)平方根為2m - 6,它的平方根為±(m - 2),求這個(gè)數(shù)。小張的解法如下:依題意可知,2m - 6是m - 2或者是-(m - 2)兩數(shù)中的一個(gè), (1)
當(dāng)2m - 6 = m - 2,解得m = 4。 (2)
所以這個(gè)數(shù)為(2m - 6)=(2×4 - 6)= 4。 (3)
當(dāng)2m – 6 = -(m - 2)時(shí),解得m = 。(4)
所以這個(gè)數(shù)為(2m - 6)=(2×- 6)= 。 (5)
綜上可得,這個(gè)數(shù)為4或 。(6)
王老師看后說,小張的解法是錯(cuò)誤的。你知道小張錯(cuò)在哪里嗎?為什么?請予改正。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在平面直角坐標(biāo)系xOy中,拋物線的解析式是y =,點(diǎn)C的坐標(biāo)為(–4,0),平行四邊形OABC的頂點(diǎn)A,B在拋物線上,AB與y軸交于點(diǎn)M,已知點(diǎn)Q(x,y)在拋物線上,點(diǎn)P(t,0)在x軸上.
(1) 寫出點(diǎn)M的坐標(biāo);
(2) 當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時(shí).
① 求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
② 當(dāng)梯形CMQP的兩底的長度之比為1∶2時(shí),求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com