如圖,直角梯形OABC的直角頂點是坐標原點,邊OA,OC分別在x軸,y軸的正半軸上.OA∥BC,D是BC上一點,,AB=3, ∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個動點,且始終保持∠DEF=45°,設OE=x,AF=y,則y與x的函數(shù)關(guān)系式為  ▲ ;如果△AEF是等腰三角形.△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積   ▲ .

,或1或    

解析解:過B作BM⊥x軸于M;

Rt△ABM中,AB=3,∠BAM=45°;則AM=BM=;
∴BC=OA﹣AM=4=,CD=BC﹣BD=;
連接OD;
如圖(1),由(1)知:D在∠COA的平分線上,則∠DOE=∠COD=45°;

又∵在梯形DOAB中,∠BAO=45°,
∴由三角形外角定理得:∠1=∠DEA﹣45°,又∠2=∠DEA﹣45°,   
∴∠1=∠2,
∴△ODE∽△AEF,
,即:,
∴y與x的解析式為:,
當△AEF為等腰三角形時,存在EF=AF或EF=AE或AF=AE共3種情況;
①當EF=AF時,如圖(2),∠FAE=∠FEA=∠DEF=45°;

∴△AEF為等腰直角三角形,D在A′E上(A′E⊥OA),
B在A′F上(A′F⊥EF)
∴△A′EF與五邊形OEFBC重疊的面積為四邊形EFBD的面積;
,
,
,
,
;
(也可用S陰影=SA‘EF﹣SA‘BD),
②當EF=AE時,如圖(3),此時△A′EF與五邊形OEFBC重疊部分面積為△A′EF面積.
∠DEF=∠EFA=45°,DE∥AB,又DB∥EA,

∴四邊形DEAB是平行四邊形
∴AE=DB=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
精英家教網(wǎng)
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)將△AEF沿一條邊翻折,翻折前后兩個三角形組成的四邊形能否成為菱形?若能,請直接寫出符合條件的x值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角梯形OABF中,∠OAB=∠B=90°,A點在x軸上,雙曲線y=
k
x
過點F,與AB交于E點,連EF,若
BF
OA
=
2
3
,S△BEF=4,則k=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角梯形OABC中,∠OAB=∠B=90°,A點在x軸上,雙曲線y=
kx
過點C和AB中點D,若S梯形OABC=6,則該雙曲線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D精英家教網(wǎng)是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖.直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4
2
,OC=
3
2
2
,
∠OAB=45°,D是BC上一點,CD=
3
2
2
.E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°,設OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 
;
(2)證明△ODE∽△AEF,并確定y與x之間的函數(shù)關(guān)系;
(3)當AF=EF時,將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案