【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

【答案】
(1)

解:設(shè)函數(shù)的表達(dá)式為y=kx+b,該一次函數(shù)過點(diǎn)(12,74),(28,66),

,

解得

∴該函數(shù)的表達(dá)式為y=﹣0.5x+80,


(2)

解:根據(jù)題意,得,

(﹣0.5x+80)(80+x)=6750,

解得,x1=10,x2=70

∵投入成本最低.

∴x2=70不滿足題意,舍去.

∴增種果樹10棵時(shí),果園可以收獲果實(shí)6750千克.


(3)

解:根據(jù)題意,得

w=(﹣0.5x+80)(80+x)

=﹣0.5 x2+40 x+6400

=﹣0.5(x﹣40)2+7200

∵a=﹣0.5<0,則拋物線開口向下,函數(shù)有最大值

∴當(dāng)x=40時(shí),w最大值為7200千克.

∴當(dāng)增種果樹40棵時(shí)果園的最大產(chǎn)量是7200千克.


【解析】本題考查二次函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用、一元二次方程等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法,學(xué)會(huì)構(gòu)建二次函數(shù)解決實(shí)際問題中的最值問題,屬于中考?碱}型.(1)函數(shù)的表達(dá)式為y=kx+b,把點(diǎn)(12,74),(28,66)代入解方程組即可.(2)列出方程解方程組,再根據(jù)實(shí)際意義確定x的值.(3)構(gòu)建二次函數(shù),利用二次函數(shù)性質(zhì)解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點(diǎn)A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點(diǎn)E,F(xiàn),過點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連結(jié)CD,則CD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我省“大美青海,美麗夏都”影響力的擴(kuò)大,越來越多的游客慕名而來.根據(jù)青海省旅游局《2015年國慶長假出游趨勢報(bào)告》繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:
(1)2015年國慶期間,西寧周邊景區(qū)共接待游客萬人,扇形統(tǒng)計(jì)圖中“青海湖”所對應(yīng)的圓心角的度數(shù)是 , 并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)預(yù)計(jì)2016年國慶節(jié)將有80萬游客選擇西寧周邊游,請估計(jì)有多少萬人會(huì)選擇去貴德旅游?
(3)甲乙兩個(gè)旅行團(tuán)在青海湖、塔爾寺、原子城三個(gè)景點(diǎn)中,同時(shí)選擇去同一個(gè)景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.

(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點(diǎn)H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組與證明
(1)解方程組:
(2)如圖,Rt△ABC中,∠ACB=90°,將Rt△ABC向下翻折,使點(diǎn)A與點(diǎn)C重合,折痕為DE.求證:DE∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時(shí),以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.

(1)當(dāng)∠AOB=18°時(shí),求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm)
(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計(jì)算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣ x,點(diǎn)A1坐標(biāo)為(﹣3,0).過點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1 , 以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點(diǎn)A2 , 再過點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2 , 以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點(diǎn)A3 , …,按此做法進(jìn)行下去,點(diǎn)A2016的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( 。

A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

同步練習(xí)冊答案