精英家教網 > 初中數學 > 題目詳情
如圖,在單位長度為1的正方形網格中,一段圓弧經過網格的交點A、B、C、

(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網格邊長為單位長,建立
平面直角坐標系; ②根據圖形提供的信息,標出該圓弧所在圓的圓心D,并連結AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C          、D         ;
②⊙D的半徑=            (結果保留根號);
③若扇形ADC是一個圓錐的側面展開圖,則該圓錐的底面的面積為         ;
(結果保留
④若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由
略解析:
(1)坐標軸與圓心各1分
(2)C(6,2);D(2,0) 各得1分
(2)2;         得1分
(3)        得1分
(4)直線EC與⊙D相切 得1分  
證CD2+CE2=DE2=25   
得∠DCE=900      得1分
∴直線EC與⊙D相切 
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在單位長度為1的正方形網格中,把線段AB繞點A順時針旋轉90°得到線段AB′.
(1)畫出線段AB′.
(2)求出線段AB′的長度;
(2)連接BB′,求∠ABB′的度數及BB′的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在單位長度為1的正方形網格中,一段圓弧經過格點A、B、C.以點O為原點、豎直和水平方向為軸、網格邊長為單位長,建立平面直角坐標系,該圓弧所在圓的圓心為點D.
(1)寫出點的坐標:C
 
、D
 

(2)⊙D的半徑=
 
(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在單位長度為1的正方形網格中有一個△DAE(∠DAE=90°).
(1)畫出△DAE繞點D逆時針旋轉90°后得到的△DCF(∠DCF=90°),再畫出△DCF沿DA方向平移6個單位長度后得到的△ABH(∠ABH=90°).
(2)△BAH能否由△ADE直接旋轉得到?若能,請標出旋轉中心,指出旋轉方向及角度;若不能,請說明理由.
(3)線段AH與DE交于點G.
①線段AH與DE有怎樣的位置關系?并說明理由;
②求DG的長(精確到0.1)及四邊形EBFD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

作圖、證明與計算
如圖,在單位長度為1的正方形網格中,△ABC的三個頂點均在格點上,E為BC中點,請按要求完成下列各題:
(1)畫AD∥BC(D為格點),連接CD;
(2)判斷四邊形ABCD的形狀;
(3)求sin∠ADC的值和tan∠CAE的值;
(4)求△ABC的外接圓半徑和內切圓半徑(保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•楊浦區(qū)二模)如圖,在單位長度為1的正方形網格中,一段圓弧經過網格的交點A、B、C.
(1)請完成如下操作:
①以點O為原點、網格邊長為單位長,建立平面直角坐標系;
②根據圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C
(6,2)
(6,2)
、D
D(2,0)
D(2,0)

②⊙D的半徑=
2
5
2
5
;
(3)求∠ACO的正弦值.

查看答案和解析>>

同步練習冊答案