如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是( )
A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)
D【考點(diǎn)】全等三角形的判定;線段垂直平分線的性質(zhì);等腰三角形的性質(zhì).
【專題】壓軸題.
【分析】根據(jù)已知條件“AB=AC,D為BC中點(diǎn)”,得出△ABD≌△ACD,然后再由AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,推出△AOE≌△EOC,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.
【解答】解:∵AB=AC,D為BC中點(diǎn),
∴CD=BD,∠BDO=∠CDO=90°,
在△ABD和△ACD中,
,
∴△ABD≌△ACD;
∵EF垂直平分AC,
∴OA=OC,AE=CE,
在△AOE和△COE中,
,
∴△AOE≌△COE;
在△BOD和△COD中,
,
∴△BOD≌△COD;
在△AOC和△AOB中,
,
∴△AOC≌△AOB;
故選:D.
【點(diǎn)評(píng)】本題考查的是全等三角形的判定方法;這是一道考試常見題,易錯(cuò)點(diǎn)是漏掉△ABO≌△ACO,此類題可以先根據(jù)直觀判斷得出可能全等的所有三角形,然后從已知條件入手,分析推理,對(duì)結(jié)論一個(gè)個(gè)進(jìn)行論證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
問題提出:求邊長分別為,,(a為正整數(shù))三角形的面積.
問題探究:為解決上述數(shù)學(xué)問題,我們采取數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,并采取一般問題特殊化的策略來進(jìn)行探究.
探究一:當(dāng)a=1時(shí),求邊長分別為、、三角形的面積.
先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為,,的格點(diǎn)三角形△ABC(如圖①).
因?yàn)锳B是直角邊分別為2和1的Rt△ABE的斜邊,所以AB=;
因?yàn)锽C是直角邊分別為1和3的Rt△BCF的斜邊,所以BC=;
因?yàn)锳C是直角邊分別為3和2的Rt△ACG的斜邊,所以AC=;通過面積轉(zhuǎn)化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG.
(1)直接寫出圖①中S△ABC=__________.
探究二:當(dāng)a=2時(shí),求邊長分別為2,,5三角形的面積.
先畫一個(gè)長方形網(wǎng)格(每個(gè)小長方形的長為2,寬為1),再在網(wǎng)格中畫出邊長分別為2,,5的格點(diǎn)三角形△ABC(如圖②).
因?yàn)锳B是直角邊分別為2和2的Rt△ABE的斜邊,所以AB=2;
因?yàn)锽C是直角邊分別為1和6的Rt△BCF的斜邊,所以BC=;
因?yàn)锳C是直角邊分別為3和4的Rt△ACG的斜邊,所以AC=5,通過面積轉(zhuǎn)化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG
(2)直接寫出圖②中S△ABC=__________.
探究三:當(dāng)a=3時(shí),求邊長分別為,,3三角形的面積.
仿照上述方法解答下列問題:
(3)畫的長方形網(wǎng)格中,每個(gè)小長方形的長應(yīng)是__________.
(4)邊長分別為,,3的三角形的面積為__________.
問題解決:求邊長分別為,,(a為正整數(shù))三角形的面積.
(5)類比上述方法畫長方形網(wǎng)格,每個(gè)小長方形的長應(yīng)是__________.
(6)邊長分別為,,(a為正整數(shù))的三角形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,在x軸、y軸的正半軸上分別截取OA、OB,使OA=OB;再分別以點(diǎn)A、B為圓心,以大于AB長為半徑作弧,兩弧交于點(diǎn)C.若點(diǎn)C的坐標(biāo)為(m﹣1,2n),則m與n的關(guān)系為( )
A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
△ABC≌△DEF,AB=2,BC=4,若△DEF的周長為偶數(shù),則DF的取值為( )
A.3 B.4 C.5 D.3或4或5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com