【題目】如圖,在△ABC中,BI,CI分別平分∠ABC,∠ACB,過I點作DE∥BC,交AB于D,交AC于E,給出下列結論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC.其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
【答案】C
【解析】
根據角平分線的性質、平行線的性質、等腰三角形的判定與性質分別對各選項分析判斷后利用排除法求解.
①∵IB平分∠ABC,∴∠DBI=∠CBI.
∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.
故本選項正確;
②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.
故本選項錯誤;
③∵三角形角平分線相交于一點,BI,CI分別是∠ABC和∠ACB的平分線,∴AI平分∠BAC.故本選項正確;
④∵BD=DI,同理可得EI=EC,∴△ADE的周長=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.
故本選項正確;
其中正確的是①③④.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖是網格圖,每個小正方形的邊長均為1.△ABC(“△”表示“三角形”)是格點三角形(即每個頂點都在小正方形的頂點上),它在坐標平面內平移,得到△PEF,點A平移后落在點P的位置上.
(1)請你在圖中畫出△PEF,并寫出頂點P、E、F的坐標;
(2)說出△PEF是由△ABC分別經過怎樣的平移得到的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地氣象資料表明:當地雷雨持續(xù)的時間t(h)可以用下面的公式來估計:t2=,其中d(km)是雷雨區(qū)域的直徑.
(1)如果雷雨區(qū)域的直徑為9km,那么這場雷雨大約能持續(xù)多長時間?
(2)如果一場雷雨持續(xù)了1h,那么這場雷雨區(qū)域的直徑大約是多少(結果精確到0.1km)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點,若點Q的坐標為,其中a為常數,則稱點Q是點P的“a級關聯點”例如,點的“3級關聯點”為,即.
已知點的“級關聯點”是點,點B的“2級關聯點”是,求點和點B的坐標;
已知點的“級關聯點”位于y軸上,求的坐標;
已知點,,點和它的“n級關聯點”都位于線段CD上,請直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個邊長為4的等邊三角形ABC與⊙O等高,如圖放置,⊙O與BC相切于點C,⊙O與AC相交于點E.
(1)求CE的長;
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。點P從點A出發(fā),以每秒3cm的速度沿折線ABCD運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動。已知動點P,Q同時出發(fā),當點Q運動到點C時,P,Q運動停止,設運動時間為t秒.
(1)求CD的長.
(2)t為何值時?四邊形PBQD為平行四邊形.
(3)在點P,點Q的運動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩位同學參加數學綜合素質測試,各項成績如下(單位:分)
數與代數 | 空間與圖形 | 統計與概率 | 綜合與實踐 | |
學生甲 | 90 | 93 | 89 | 90 |
學生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙成績的中位數;
(2)如果數與代數、空間與圖形、統計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數學綜合素質成績分別為多少分?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com