【題目】如圖,以正方形ABCD的對角線AC為一邊作菱形AEFC,則∠FAB=( )
A.30°
B.45°
C.22.5°
D.135°
【答案】C
【解析】解:因為AC為正方形ABCD的對角線,則∠CAE=45°,又因為菱形的每一條對角線平分一組對角,則∠FAB=22.5°,
故選:C.
【考點精析】根據(jù)題目的已知條件,利用菱形的判定方法和正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋時期杰出的數(shù)學家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了 ( 為非負整數(shù))的展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.
(1)請仔細觀察,填出(a+b)4的展開式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實際問題:假如今天是星期三,再過7天還是星期三,那么再過 天是星期 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=60',∠D=50°,將△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,則∠C的度數(shù)為
A. 110° B. 115° C. 120° D. 125°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線過點B,C.
(1)求b、c的值;
(2)若點D是拋物線在x軸下方圖象上的動點,過點D作x軸的垂線,與直線BC相交于點E.當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查適合采用抽樣調(diào)查的是( 。
A. 某公司招聘人員,對應(yīng)聘人員進行面試
B. 調(diào)查一批節(jié)能燈泡的使用壽命
C. 為保證火箭的成功發(fā)射,對其零部件進行檢查
D. 對乘坐某次航班的乘客進行安全檢查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,過對角線AC的中點O作AC的垂線,分別交射線AD和CB于點E、F,連結(jié)AF、CE.
(1)求證:AE=CF.
(2)求證:四邊形AFCE是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com