如圖1,圖2,是一款家用的垃圾桶,踏板AB(與地面平行)或繞定點P(固定在垃圾桶底部的某一位置)上下轉(zhuǎn)動(轉(zhuǎn)動過程中始終保持AP=A′P,BP=B′P).通過向下踩踏點A到A′(與地面接觸點)使點B上升到點B′,與此同時傳動桿BH運動到B'H'的位置,點H繞固定點D旋轉(zhuǎn)(DH為旋轉(zhuǎn)半徑)至點H',從而使桶蓋打開一個張角∠HDH′.如圖3,桶蓋打開后,傳動桿H′B′所在的直線分別與水平直線AB、DH垂直,垂足為點M、C,設(shè)H′C=B′M.測得AP=6cm,PB=12cm,DH′=8cm.要使桶蓋張開的角度∠HDH'不小于60°,那么踏板AB離地面的高度至少等于多少cm?(結(jié)果保留兩位有效數(shù)字)(參考數(shù)據(jù):
2
≈1.41,
3
≈1.73)
精英家教網(wǎng)
分析:如圖所示,要想求出踏板AB離地面的高度至少等于多少cm,即必須求出A′N,而A′N∥B′M,所以△A′NP∽△B′MP,又∵A′P和PB′的長為已知量,所以在
PA′
PB′
=
NA′
MB′
成立的前提下,必須求出MB′,而MB′=H′C,因此最終解決點是求出H′C,在△H′CD中
CH′
DH′
=sin60°=
3
2
,由此可以求出H′C=MB′,因此可以求出NA′=3.5,所以AB離地面至少3.5cm.
解答:精英家教網(wǎng)解:作A′N⊥AB于N點.
在Rt△H′CD中,
若∠HDH′不小于60°,
H′C
H′D
≥sin60°=
3
2
,
即H'C≥
3
2
H'D=4
3

∵B'M=H'C≥4
3
,
又∵Rt△A′NP∽Rt△B′MP,
A′N
B′M
=
A′P
B′P
,
∴A′N=
A′P•B′M
B′P
6×4
3
12
=2
3
≈3.5cm.
∴踏板AB離地面的高度至少等于3.5cm.
點評:解此題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,抽象到相似三角形和解直角三角形中,利用它們的性質(zhì)只要求出CH′的長,一切問題都迎刃而解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,圖2,是一款家用的垃圾桶,踏板AB(與地面平行)或繞定點P(固定在垃圾桶底部的某一位置)上下轉(zhuǎn)動(轉(zhuǎn)動過程中始終保持AP=A′P,BP=B′P).通過向下踩踏點A到A′(與地面接觸點)使點B上升到點B′,與此同時傳動桿BH運動到B'H'的位置,點H繞固定點D旋轉(zhuǎn)(DH為旋轉(zhuǎn)半徑)至點H',從而使桶蓋打開一個張角∠HDH′.如圖3,桶蓋打開后,傳動桿H′B′所在的直線分別與水平直線AB、DH垂直,垂足為點M、C,設(shè)H′C=B′M.測得AP=6cm,PB=12cm,DH′=8cm.要使桶蓋張開的角度∠HDH'不小于60°,那么踏板AB離地面的高度至少等于多少cm?(結(jié)果保留兩位有效數(shù)字)(參考數(shù)據(jù):數(shù)學(xué)公式≈1.41,數(shù)學(xué)公式≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《直角三角形的邊角關(guān)系》中考題集(24):1.4 船有觸角的危險嗎(解析版) 題型:解答題

如圖1,圖2,是一款家用的垃圾桶,踏板AB(與地面平行)或繞定點P(固定在垃圾桶底部的某一位置)上下轉(zhuǎn)動(轉(zhuǎn)動過程中始終保持AP=A′P,BP=B′P).通過向下踩踏點A到A′(與地面接觸點)使點B上升到點B′,與此同時傳動桿BH運動到B'H'的位置,點H繞固定點D旋轉(zhuǎn)(DH為旋轉(zhuǎn)半徑)至點H',從而使桶蓋打開一個張角∠HDH′.如圖3,桶蓋打開后,傳動桿H′B′所在的直線分別與水平直線AB、DH垂直,垂足為點M、C,設(shè)H′C=B′M.測得AP=6cm,PB=12cm,DH′=8cm.要使桶蓋張開的角度∠HDH'不小于60°,那么踏板AB離地面的高度至少等于多少cm?(結(jié)果保留兩位有效數(shù)字)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《解直角三角形》中考題集(31):1.3 解直角三角形(解析版) 題型:解答題

如圖1,圖2,是一款家用的垃圾桶,踏板AB(與地面平行)或繞定點P(固定在垃圾桶底部的某一位置)上下轉(zhuǎn)動(轉(zhuǎn)動過程中始終保持AP=A′P,BP=B′P).通過向下踩踏點A到A′(與地面接觸點)使點B上升到點B′,與此同時傳動桿BH運動到B'H'的位置,點H繞固定點D旋轉(zhuǎn)(DH為旋轉(zhuǎn)半徑)至點H',從而使桶蓋打開一個張角∠HDH′.如圖3,桶蓋打開后,傳動桿H′B′所在的直線分別與水平直線AB、DH垂直,垂足為點M、C,設(shè)H′C=B′M.測得AP=6cm,PB=12cm,DH′=8cm.要使桶蓋張開的角度∠HDH'不小于60°,那么踏板AB離地面的高度至少等于多少cm?(結(jié)果保留兩位有效數(shù)字)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《解直角三角形》中考題集(27):25.3 解直角三角形(解析版) 題型:解答題

如圖1,圖2,是一款家用的垃圾桶,踏板AB(與地面平行)或繞定點P(固定在垃圾桶底部的某一位置)上下轉(zhuǎn)動(轉(zhuǎn)動過程中始終保持AP=A′P,BP=B′P).通過向下踩踏點A到A′(與地面接觸點)使點B上升到點B′,與此同時傳動桿BH運動到B'H'的位置,點H繞固定點D旋轉(zhuǎn)(DH為旋轉(zhuǎn)半徑)至點H',從而使桶蓋打開一個張角∠HDH′.如圖3,桶蓋打開后,傳動桿H′B′所在的直線分別與水平直線AB、DH垂直,垂足為點M、C,設(shè)H′C=B′M.測得AP=6cm,PB=12cm,DH′=8cm.要使桶蓋張開的角度∠HDH'不小于60°,那么踏板AB離地面的高度至少等于多少cm?(結(jié)果保留兩位有效數(shù)字)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

同步練習(xí)冊答案