邊長為1的正方形ABCD各邊上依次有點E、F、G、H,且AE=BF=CG=DH,設AE=x,小正方形EFGH的面積為y,則y與x的函數(shù)圖象大致是( 。
分析:根據(jù)條件可知△AEH≌△BFE≌△CGF≌△DHG,設AE為x,則AH=1-x,根據(jù)勾股定理EH2=AE2+AH2=x2+(1-x)2,進而可求出函數(shù)解析式,求出答案.
解答:解:∵根據(jù)正方形的四邊相等,四個角都是直角,且AE=BF=CG=DH,
∴可證△AEH≌△BFE≌△CGF≌△DHG.
設AE為x,則AH=1-x,根據(jù)勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2
s=2x2-2x+1,
∴所求函數(shù)是一個開口向上,對稱軸是x=
1
2

∴自變量的取值范圍是大于0小于1.
故選B.
點評:此題考查了動點問題的函數(shù)圖象,解題的關鍵是根據(jù)自變量的取值范圍,并且可以考慮求出函數(shù)的解析式來解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點E是邊長為2的正方形ABCD的AB邊的延長線上一點,P為邊AB上的一個動點(不與A、B重合),直線PF⊥PD,∠EBC的平分線與PF交于點Q.
(1)如圖1,當P為AB的中點時,求PD的長,并比較PD與PQ長的大;
(2)如圖2,在點P運動過程中,PD與PQ長的大小關系會發(fā)生變化嗎?為什么?
(3)設PB=x,△BPQ和△PAD的面積分別是S1、S2,又y=
S2S1
,試求y與x之間的函數(shù)關系式,并判斷y隨PB的變化而怎樣變化?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個矩形,通過計算圖形(陰影部分的面積),驗證了一個等式是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2011•石家莊二模)閱讀材料:
我們將能完全覆蓋平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.
例如:線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
操作探究:
(1)如圖1:已知線段AB與其外一點C,作過A、B、C三點的最小覆蓋圓;(不寫作法,保留作圖痕跡)
(2)邊長為1cm的正方形的最小覆蓋圓的半徑是
2
2
2
2
cm;
如圖2,邊長為1cm的兩個正方形并列在一起,則其最小覆蓋圓的半徑是
5
2
5
2
cm;
如圖3,半徑為1cm的兩個圓外切,則其最小覆蓋圓的半徑是
2
2
cm.
聯(lián)想拓展:
⊙O1的半徑為8,⊙O2,⊙O3的半徑均為5.
(1)當⊙O1、⊙O2、⊙O3兩兩外切時(如圖4),則其最小覆蓋圓的半徑是
40
3
40
3

(2)當⊙O1、⊙O2、⊙O3兩兩相切時,(1)中的結(jié)論還成立嗎?如果不成立,則其最小覆蓋圓的半徑是
13
13
,并作出示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知E是邊長為12的正方形的邊AB上一點,且AE=5,P是對角線AC上任意一點,則PE+PB的最小值是
13
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,兩個長方形的一部分重疊在一起,重疊部分是邊長為3的正方形,則陰影部分的面積是
ab+cd-18
ab+cd-18

查看答案和解析>>

同步練習冊答案