精英家教網 > 初中數學 > 題目詳情
(2008•畢節(jié)地區(qū))如圖所示,在梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4,EF是梯形的中位線,DH為梯形的高,則下列結論正確的有    .(填序號之間不用符號,如①②)
①四邊形EHCF為菱形;②∠BCD=60°;③S△BEH=S△CEH;④以AB為直徑的圓與CD相切于點F.
【答案】分析:根據已知對各個結論進行分析從而得到最后答案.
解答:解:①正確
∵EF=2,BH=AD=1
∴CH=2
∴即四邊形EFCH是平行四邊形
∵CF=2=EF
∴四邊形EHCF為菱形;
②正確,在直角三角形CDH中,CH=2,CD=4,則∠CDH=30°,∴∠BCD=60°;
③正確,因為BH=CH,所以S△BEH=S△CEH;
④不正確,根據以上的證明只能得出以AB為直徑的圓與CD相切于點G,而不切于點F,
因為EF=2,而圓的半徑為根號3,
所以以AB為直徑的圓不可能與點F相切.
④不正確,
∵以AB為直徑的圓
∴圓心是E,半徑是AB的一半
作EG⊥CD于G
∴∠ECG=30°
∴CE=2EG
∵在直角三角形BCE中,∠BCE=30°
∴CE=2BE=AB
∴AB=2EG
∴以AB為直徑的圓與CD相切于點F;
故答案為:①②③.
點評:此類題的綜合性較強,要非常熟悉特殊四邊形的性質以及直角三角形的性質和梯形的中位線定理.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年貴州省畢節(jié)地區(qū)中考數學試卷(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年貴州省畢節(jié)地區(qū)中考數學試卷(解析版) 題型:選擇題

(2008•畢節(jié)地區(qū))把函數y=x2的圖象向右平移兩個單位,再向下平移一個單位得到的函數關系式是( )
A.y=(x+2)2-1
B.y=(x-2)2-1
C.y=(x+2)2+1
D.y=(x-2)2+1

查看答案和解析>>

科目:初中數學 來源:2005年甘肅省中考數學試卷(課標卷)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數的解析式;若不存在.請說明理由.

查看答案和解析>>

同步練習冊答案