如圖,已知,在Rt△ABC中,∠C=90°,沿過B點的一條直線BE折疊這個三角形,使C點與AB邊上的一點D重合.
(1)當(dāng)∠A滿足什么條件時,點D恰為AB的中點寫出一個你認為適當(dāng)?shù)臈l件,并利用此條件證明D為AB的中點;
(2)在(1)的條件下,若DE=1,求△ABC的面積.
(1)添加條件是∠A=30°.
證明:∵∠A=30°,∠C=90°,所以∠CBA=60°,
∵C點折疊后與AB邊上的一點D重合,
∴BE平分∠CBD,∠BDE=90°,
∴∠EBD=30°,
∴∠EBD=∠EAB,所以EB=EA;
∵ED為△EAB的高線,所以ED也是等腰△EBA的中線,
∴D為AB中點.

(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.
在Rt△ADE中,根據(jù)勾股定理,得AD=
22-1
=
3

∴AB=2
3
,∵∠A=30°,∠C=90°,
∴BC=
1
2
AB=
3

在Rt△ABC中,AC=
AB2-BC2
=3,
∴S△ABC=
1
2
×AC×BC=
3
3
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AC=BC=2,∠ACB=90°,D是BC邊的中點,E是AB邊上一動點,則EC+ED的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=CD=x,AD=BC=y,把它折疊起來,使頂點A與C重合,則折痕PQ的長度為( 。
A.
y
x
x2+y2
B.
x
y
x2+y2
C.
y
x
2x2+y2
D.
x
y
x2+2y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

我國重要銀行的商標(biāo)設(shè)計都融入了中國古代錢幣的圖案,下列我國四大銀行的商標(biāo)圖案不是軸對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

曉彤在平面鏡中看到一串?dāng)?shù)字為“”,則這串?dāng)?shù)字實際應(yīng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=8,BC=10,沿AF折疊矩形ABCD,使點D剛好落在邊BC上的點E處,則折痕AF的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中每個小正方形的邊長都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC向右平移4個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點C1的坐標(biāo).
(2)作出△A1B1C1關(guān)于x軸的對稱圖形△A2B2C2,并直接寫出點A2的坐標(biāo).
(3)請由圖形直接判斷以點C1、C2、B2、B1為頂點的四邊形是什么四邊形?并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

按下列的題目要求在如圖的平面直角坐標(biāo)系上畫出相應(yīng)的點和線段,已知每個方格的邊長都為1.
(1)在平面直角坐標(biāo)系中描出下列各點,并將這些點用線段依次連接起來:(0,0),(3,4),(5,4),(6,3),(6,1.5),(5,0),(6,-1.5),(6,-3),(5,-4),(3,-4),(0,0);
(2)在圖上畫出(1)中連接起來的圖形關(guān)于y軸對稱的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等邊三角形的對稱軸有( 。
A.1條B.3條C.9條D.無數(shù)條

查看答案和解析>>

同步練習(xí)冊答案