已知,直線y=x繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到直線l,直線l與反比例函數(shù)y=的圖象的一個交點(diǎn)為A(3,m),則k=   
【答案】分析:根據(jù)直線y=x旋轉(zhuǎn)后得到的直線l:y=-x與反比例函數(shù)y=聯(lián)立即可解得k的值.
解答:解:直線y=x繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到直線l:y=-x;
點(diǎn)A(3,m)為直線l與反比例函數(shù)的交點(diǎn),則有
解得
故答案為:-9.
點(diǎn)評:本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,以及用待定系數(shù)法確定函數(shù)的解析式,同學(xué)們要熟練掌握這種方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,點(diǎn)D、E分別為△ABC的邊AB、AC的中點(diǎn),將△ADE繞點(diǎn)D旋轉(zhuǎn)180°至△BDF.
(1)小明發(fā)現(xiàn)四邊形BCEF的形狀是平行四邊形,請你幫他把說理過程補(bǔ)齊.
理由是:因?yàn)椤鰾DF是由△ADE繞點(diǎn)D旋轉(zhuǎn)180°得到的所以△ADE與△BDF全等且點(diǎn)A、D、B在同一條直線上點(diǎn)E、D、F也在同一條直線上.
所以BF=AE,∠F=∠
AED

可得BF∥
AC

又因?yàn)镋是AC的中點(diǎn),所以EC=AE,
所以BF=
EC

因此,四邊形BCEF是平行四邊形(根據(jù)
一組對邊平行切相等的四邊形是平行四邊形

(2)小明還發(fā)現(xiàn)在原有的△ABC中添加一個條件后,就可以使四邊形BFEC成為一種特殊的平行四邊形.你也來試試.
你認(rèn)為添加條件
∠C=90°
后,四邊形BFEC是
矩形
.(友情提示:我們將根據(jù)你所提出問題的難易程度,給予不同的分值.)理由是:
有一個角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)A是△ABC和△ADE的公共頂點(diǎn),∠BAC+∠DAE=180°,AB=k•AE,AC=k•AD,點(diǎn)M是DE的中點(diǎn),直線AM交直線BC于點(diǎn)N.
(1)探究∠ANB與∠BAE的關(guān)系,并加以證明.
說明:如果你經(jīng)過反復(fù)探索沒解決問題,可以從下面①②中選取一個作為已知條件,再完成你的證明,選、俦冗x原題少得2分,選、诒冗x原題少得5分.
①如圖2,k=1;②如圖3,AB=AC.
(2)若△ADE繞點(diǎn)A旋轉(zhuǎn),其他條件不變,則在旋轉(zhuǎn)的過程中(1)的結(jié)論是否發(fā)生變化?如果沒有發(fā)生變化,請寫出一個可以推廣的命題;如果有變化,請畫出變化后的一個圖形,并直接寫出變化后∠ANB與∠BAE的關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,正方形ABCD和正方形QMNP,M是正方形ABCD的對稱中心,邊MN與邊AB交于F,邊AD與邊QM交于E.
(1)在圖1中,求證:AE+AF=
2
AM

(2)如圖2,若將原題中的“正方形”改為“菱形”,且∠QMN=∠CBA=60°其他條件不變,則在圖2中線段AE,AF與MA的關(guān)系為
AE+AF=AM
AE+AF=AM
,
(3)在(2)的條件下,若菱形MNPQ在繞著點(diǎn)M運(yùn)動的過程中,點(diǎn)E,F(xiàn)分別在邊AD,AB所在直線上時(shí),已知菱形ABCD的邊長為4,AE=1求△AFM的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,已知AB=4,BD=3,AD=5,以AB所在直線為x軸.以B點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系.將平行四邊形ABCD繞B點(diǎn)逆時(shí)針方向旋轉(zhuǎn),使C點(diǎn)落在y軸的正半軸上,C、D、A三點(diǎn)旋轉(zhuǎn)后的位置分別是P、Q和T三點(diǎn).
(1)求證:點(diǎn)D在y軸上;
(2)若直線y=kx+b經(jīng)過P、Q兩點(diǎn),求直線PQ的解析式;
(3)將平行四邊形PQTB沿y軸的正半軸向上平行移動,得平行四邊形P′Q′T′B′,Q、T、B依次與點(diǎn)P′、Q′、T′、B′對應(yīng)).設(shè)BB′=m(0<m≤3).平行四邊形P′Q′T′B′與原平行四邊形ABCD重疊部分的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市立達(dá)中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,已知AB=4,BD=3,AD=5,以AB所在直線為x軸.以B點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系.將平行四邊形ABCD繞B點(diǎn)逆時(shí)針方向旋轉(zhuǎn),使C點(diǎn)落在y軸的正半軸上,C、D、A三點(diǎn)旋轉(zhuǎn)后的位置分別是P、Q和T三點(diǎn).
(1)求證:點(diǎn)D在y軸上;
(2)若直線y=kx+b經(jīng)過P、Q兩點(diǎn),求直線PQ的解析式;
(3)將平行四邊形PQTB沿y軸的正半軸向上平行移動,得平行四邊形P′Q′T′B′,Q、T、B依次與點(diǎn)P′、Q′、T′、B′對應(yīng)).設(shè)BB′=m(0<m≤3).平行四邊形P′Q′T′B′與原平行四邊形ABCD重疊部分的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案