(2010•十堰)已知關(guān)于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2-(3m-1)x+2m-2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線(xiàn)的解析式;
(3)在直角坐標(biāo)系xoy中,畫(huà)出(2)中的函數(shù)圖象,結(jié)合圖象回答問(wèn)題:當(dāng)直線(xiàn)y=x+b與(2)中的函數(shù)圖象只有兩個(gè)交點(diǎn)時(shí),求b的取值范圍.
【答案】分析:(1)本題中,二次項(xiàng)系數(shù)m的值不確定,分為m=0,m≠0兩種情況,分別證明方程有實(shí)數(shù)根;
(2)設(shè)拋物線(xiàn)與x軸兩交點(diǎn)的橫坐標(biāo)為x1,x2,則兩交點(diǎn)之間距離為|x1-x2|=2,再與根與系數(shù)關(guān)系的等式結(jié)合變形,可求m的值,從而確定拋物線(xiàn)的解析式;
(3)分三種情況:只與拋物線(xiàn)y1有兩個(gè)交點(diǎn),只與拋物線(xiàn)y2有兩個(gè)交點(diǎn),直線(xiàn)過(guò)拋物線(xiàn)y1、y2的交點(diǎn),觀察圖象,分別求出b的取值范圍.
解答:解:(1)分兩種情況討論.
①當(dāng)m=0時(shí),方程為x-2=0,x=2.
∴m=0時(shí),方程有實(shí)數(shù)根.
②當(dāng)m≠0時(shí),則一元二次方程的根的判別式
△=[-(3m-1)]2-4m(2m-2)
=9m2-6m+1-8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0時(shí),方程有實(shí)數(shù)根.
故無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根.
綜合①②可知,m取任何實(shí)數(shù),方程mx2-(3m-1)x+2m-2=0恒有實(shí)數(shù)根;

(2)設(shè)x1,x2為拋物線(xiàn)y=mx2-(3m-1)x+2m-2與x軸交點(diǎn)的橫坐標(biāo),
則x1+x2=,x1x2=
由|x1-x2|=
=
=
=
=||.
由|x1-x2|=2,得||=2,
=2或=-2.
∴m=1或m=-
∴所求拋物線(xiàn)的解析式為y1=x2-2x,
y2=-(x-2)(x-4).
其圖象如右圖所示:

(3)在(2)的條件下y=x+b與拋物線(xiàn)
y1,y2組成的圖象只有兩個(gè)交點(diǎn),結(jié)合圖象求b的取值范圍.
,
當(dāng)y1=y時(shí),得x2-3x-b=0,有△=9+4b=0得b=-
同理,△=9-4(8+3b)=0,得b=-
觀察圖象可知,
當(dāng)b<-,或b>-直線(xiàn)y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn);
,
當(dāng)y1=y2時(shí),有x=2或x=1.
當(dāng)x=1時(shí),y=-1.
所以過(guò)兩拋物線(xiàn)交點(diǎn)(1,-1),(2,0)的直線(xiàn)為y=x-2.
綜上所述可知:當(dāng)b<-或b>-或b=-2時(shí),
直線(xiàn)y=x+b與(2)中圖象只有兩個(gè)交點(diǎn).
點(diǎn)評(píng):本題具有較強(qiáng)的綜合性,考查了一元二次方程的根的情況,二次函數(shù)與對(duì)應(yīng)的一元二次方程的聯(lián)系,討論一次函數(shù)與二次函數(shù)圖象交點(diǎn)的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2010•十堰)已知關(guān)于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2-(3m-1)x+2m-2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線(xiàn)的解析式;
(3)在直角坐標(biāo)系xoy中,畫(huà)出(2)中的函數(shù)圖象,結(jié)合圖象回答問(wèn)題:當(dāng)直線(xiàn)y=x+b與(2)中的函數(shù)圖象只有兩個(gè)交點(diǎn)時(shí),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2010•十堰)某鄉(xiāng)鎮(zhèn)中學(xué)數(shù)學(xué)活動(dòng)小組,為測(cè)量數(shù)學(xué)樓后面的山高AB,用了如下方法.如圖所示,在教學(xué)樓底C處測(cè)得山頂A的仰角為60°,在教學(xué)樓頂D處,測(cè)得山頂A的俯角為45°.已知教學(xué)樓高CD=12米,求山高AB.(參考數(shù)據(jù)=1.73=1.41,精確到0.1米,化簡(jiǎn)后再代入?yún)?shù)數(shù)據(jù)運(yùn)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•十堰)某鄉(xiāng)鎮(zhèn)中學(xué)數(shù)學(xué)活動(dòng)小組,為測(cè)量數(shù)學(xué)樓后面的山高AB,用了如下方法.如圖所示,在教學(xué)樓底C處測(cè)得山頂A的仰角為60°,在教學(xué)樓頂D處,測(cè)得山頂A的俯角為45°.已知教學(xué)樓高CD=12米,求山高AB.(參考數(shù)據(jù)=1.73=1.41,精確到0.1米,化簡(jiǎn)后再代入?yún)?shù)數(shù)據(jù)運(yùn)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•十堰)如圖,已知梯形ABCD的中位線(xiàn)為EF,且△AEF的面積為6cm2,則梯形ABCD的面積為( )

A.12cm2
B.18cm2
C.24cm2
D.30cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案