【答案】
分析:(1)已知了拋物線的解析式,當(dāng)y=0時(shí)可求出A,B兩點(diǎn)的坐標(biāo),當(dāng)x=0時(shí),可求出C點(diǎn)的坐標(biāo).根據(jù)對(duì)稱軸x=-
可得出對(duì)稱軸的解析式.
(2)PF的長(zhǎng)就是當(dāng)x=m時(shí),拋物線的值與直線BC所在一次函數(shù)的值的差.可先根據(jù)B,C的坐標(biāo)求出BC所在直線的解析式,然后將m分別代入直線BC和拋物線的解析式中,求得出兩函數(shù)的值的差就是PF的長(zhǎng).
根據(jù)直線BC的解析式,可得出E點(diǎn)的坐標(biāo),根據(jù)拋物線的解析式可求出D點(diǎn)的坐標(biāo),然后根據(jù)坐標(biāo)系中兩點(diǎn)的距離公式,可求出DE的長(zhǎng),然后讓PF=DE,即可求出此時(shí)m的值.
(3)可將三角形BCF分成兩部分來(lái)求:
一部分是三角形PFC,以PF為底邊,以P的橫坐標(biāo)為高即可得出三角形PFC的面積.
一部分是三角形PFB,以PF為底邊,以P、B兩點(diǎn)的橫坐標(biāo)差的絕對(duì)值為高,即可求出三角形PFB的面積.
然后根據(jù)三角形BCF的面積=三角形PFC的面積+三角形PFB的面積,可求出關(guān)于S、m的函數(shù)關(guān)系式.
解答:解:(1)A(-1,0),B(3,0),C(0,3).
拋物線的對(duì)稱軸是:直線x=1.
(2)①設(shè)直線BC的函數(shù)關(guān)系式為:y=kx+b.
把B(3,0),C(0,3)分別代入得:
解得:k=-1,b=3.
所以直線BC的函數(shù)關(guān)系式為:y=-x+3.
當(dāng)x=1時(shí),y=-1+3=2,
∴E(1,2).
當(dāng)x=m時(shí),y=-m+3,
∴P(m,-m+3).
在y=-x
2+2x+3中,當(dāng)x=1時(shí),y=4.
∴D(1,4)
當(dāng)x=m時(shí),y=-m
2+2m+3,
∴F(m,-m
2+2m+3)
∴線段DE=4-2=2,
線段PF=-m
2+2m+3-(-m+3)=-m
2+3m
∵PF∥DE,
∴當(dāng)PF=ED時(shí),四邊形PEDF為平行四邊形.
由-m
2+3m=2,解得:m
1=2,m
2=1(不合題意,舍去).
因此,當(dāng)m=2時(shí),四邊形PEDF為平行四邊形.
②設(shè)直線PF與x軸交于點(diǎn)M,由B(3,0),O(0,0),可得:OB=OM+MB=3.
∵S=S
△BPF+S
△CPF即S=
PF•BM+
PF•OM=
PF•(BM+OM)=
PF•OB.
∴S=
×3(-m
2+3m)=-
m
2+
m(0≤m≤3).
點(diǎn)評(píng):本題主要考查了二次函數(shù)的綜合應(yīng)用,根據(jù)二次函數(shù)得出相關(guān)點(diǎn)的坐標(biāo)和對(duì)稱軸的解析式是解題的基礎(chǔ).