(2010•三明)如圖,在3×3正方形網(wǎng)格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的概率是( )

A.
B.
C.
D.
【答案】分析:根據(jù)題意,涂黑一個格共6種等可能情況,結合軸對稱的意義,可得到軸對稱圖形的情況數(shù)目,結合概率的計算公式,計算可得答案.
解答:解:根據(jù)題意,涂黑每一個格都會出現(xiàn)一種等可能情況,共出現(xiàn)6種等可能情況,
而當涂黑左上角和右下角的黑塊時,不會是軸對稱圖形,其余的4種情況均可以,
故其概率為=;
故選D.
點評:此題考查幾何概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省三明市中考數(shù)學試卷(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2010•三明)如圖,在3×3正方形網(wǎng)格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省三明市中考數(shù)學試卷(解析版) 題型:填空題

(2010•三明)如圖是小玲設計用手電來測量某古城墻高度的示意圖.在點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后,剛好射到古城墻CD的頂端C處.已知AB⊥BD,CD⊥BD.且測得AB=1.4米,BP=2.1米,PD=12米.那么該古城墻CD的高度是    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省三明市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•三明)如圖,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分線DE交AB于點D,交BC于點E,則下列結論不正確的是( )

A.AE=BE
B.AC=BE
C.CE=DE
D.∠CAE=∠B

查看答案和解析>>

同步練習冊答案