【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
【答案】(1)詳見解析;(2)詳見解析
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)、等腰三角形的性質(zhì),利用全等三角形的判定定理SAS可以證得△ADC≌△ECD;
(2)利用等腰三角形的“三合一”性質(zhì)推知AD⊥BC,即∠ADC=90°;由平行四邊形的判定定理(對(duì)邊平行且相等是四邊形是平行四邊形)證得四邊形ADCE是平行四邊形,所以有一個(gè)角是直角的平行四邊形是矩形.
證明:(1)∵四邊形ABDE是平行四邊形(已知),
∴AB∥DE,AB=DE(平行四邊形的對(duì)邊平行且相等);
∴∠B=∠EDC(兩直線平行,同位角相等);
又∵AB=AC(已知),
∴AC=DE(等量代換),∠B=∠ACB(等邊對(duì)等角),
∴∠EDC=∠ACD(等量代換);
∵在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS);
(2)∵四邊形ABDE是平行四邊形(已知),
∴BD∥AE,BD=AE(平行四邊形的對(duì)邊平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD(等量代換),
∴四邊形ADCE是平行四邊形(對(duì)邊平行且相等的四邊形是平行四邊形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC(等腰三角形的“三合一”性質(zhì)),
∴∠ADC=90°,
∴ADCE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com