(2010•豐臺區(qū)二模)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

【答案】分析:(1)由OC∥AD,得∠1=∠3,∠2=∠4,證得∠1=∠2,又OC公共,OD=OB,于是△ODC≌△OBC,則∠ODC=∠OBC,而BM切半圓于點B,得到∠OBC=90°,所以∠ODC=90°.
(2)過A作AE垂直CD,E為垂足,連BD,則∠ADB=90°,由∠EDA+∠3=∠4+∠ABD=90°,得到∠EDA=∠ABD,所以Rt△ADE∽Rt△ABD,得到AD2=AE•AB,而AB=4,AD=1,即可得到AE.
解答:(1)證明:如圖,
∵OC∥AD,
∴∠1=∠3,∠2=∠4,
而OD=OA,∠3=∠4,
∴∠1=∠2.
又∵OD=OB,OC公共,
∴△ODC≌△OBC,
∴∠ODC=∠OBC,
∵BM切半圓于點B,得到∠OBC=90°,
∴∠ODC=90°,
∴CD是半圓O的切線;

(2)解:過A作AE垂直CD,E為垂足,連BD,則∠ADB=90°,
∴∠EDA+∠3=∠4+∠ABD=90°,
∴∠EDA=∠ABD,
∴Rt△ADE∽Rt△ABD,
∴AD2=AE•AB,
而AB=4,AD=1,
∴1=4AE,得AE=
所以點A到直線CD的距離為
點評:本題考查了圓的切線的判定方法.經(jīng)過半徑的外端點與半徑垂直的直線是圓的切線.當已知直線過圓上一點,要證明它是圓的切線,則要連接圓心和這個點,證明這個連線與已知直線垂直即可;當沒告訴直線過圓上一點,要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.同時考查了切線的性質(zhì)和三角形相似的判定和性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2010•豐臺區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無論m為任何實數(shù),該二次函數(shù)的圖象與x軸都有兩個交點;
(2)當該二次函數(shù)的圖象經(jīng)過點(3,6)時,求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個單位長度后與(2)中的拋物線交于A、B兩點(點A在點B的左邊),一個動點P自A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•豐臺區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無論m為任何實數(shù),該二次函數(shù)的圖象與x軸都有兩個交點;
(2)當該二次函數(shù)的圖象經(jīng)過點(3,6)時,求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個單位長度后與(2)中的拋物線交于A、B兩點(點A在點B的左邊),一個動點P自A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬試卷(2)(解析版) 題型:選擇題

(2010•豐臺區(qū)二模)2010的相反數(shù)是( )
A.-2010
B.2010
C.
D.-

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省中考數(shù)學適應性練習(解析版) 題型:選擇題

(2010•豐臺區(qū)二模)2010的相反數(shù)是( )
A.-2010
B.2010
C.
D.-

查看答案和解析>>

同步練習冊答案