如圖,拋物線軸交于點(diǎn)A(-1,0)、B(3,0),與軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若P為線段BD上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,試用含m的代數(shù)式表示點(diǎn)P的縱坐標(biāo);

(3)過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);

(4)若點(diǎn)F是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)F作FQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)F的坐標(biāo)為           時(shí),四邊形FQAC是平行四邊形;當(dāng)點(diǎn)F的坐標(biāo)為            時(shí),四邊形FQAC是等腰梯形(直接寫(xiě)出結(jié)果,不寫(xiě)求解過(guò)程).

 

【答案】

(1),(1,4);(2) ; (3),();(4) (2,3);().

【解析】

試題分析:(1)拋物線的解析式為:,將點(diǎn)C(0,3)代入即可求出拋物線的解析式,再化成頂點(diǎn)式從而求出頂點(diǎn)坐標(biāo)D.

(2)先求出直線BD的解析式為,∵點(diǎn)P的橫坐標(biāo)為m∴點(diǎn)P的縱坐標(biāo)為:.

(3)用割補(bǔ)法求出,再配成頂點(diǎn)式,∵,∴當(dāng)時(shí),四邊形PMAC的面積取得最大值為

此時(shí)點(diǎn)P的坐標(biāo)為().

(4)四邊形PQAC為平行四邊形或等腰梯形時(shí),需要結(jié)合幾何圖形的性質(zhì)求出P點(diǎn)坐標(biāo):①當(dāng)四邊形PQAC為平行四邊形時(shí),如答圖1所示.構(gòu)造全等三角形求出P點(diǎn)的縱坐標(biāo),再利用P點(diǎn)與C點(diǎn)關(guān)于對(duì)稱軸x=1對(duì)稱的特點(diǎn),求出P點(diǎn)的橫坐標(biāo);②當(dāng)四邊形PQAC為平行四邊形時(shí),如答圖2所示.利用等腰梯形、平行四邊形、全等三角形以及線段之間的三角函數(shù)關(guān)系,求出P點(diǎn)坐標(biāo).

                 

答圖1                                              答圖2

試題解析:(1)∵拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0),

∴可設(shè)拋物線的解析式為:

又∵拋物線 與y軸交于點(diǎn)C(0,3),

即拋物線的解析式為:

∴拋物線頂點(diǎn)D的坐標(biāo)為(1,4)

(2)設(shè)直線BD的解析式為:

由B(3,0),D(1,4)得

解得

∴直線BD的解析式為

∵點(diǎn)P在直線PD上,點(diǎn)P的橫坐標(biāo)為m

∴點(diǎn)P的縱坐標(biāo)為:

(3)由(1),(2)知:

OA=1,OC=3,OM=m,PM=

,∴當(dāng)時(shí),四邊形PMAC的面積取得最大值為.

此時(shí)點(diǎn)P的坐標(biāo)為().

(4)(2,3);().

考點(diǎn):二次函數(shù)及其應(yīng)用

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線與軸交于,0)、,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個(gè)根。(14分)

(1)求拋物線的解析式;

(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn),交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,

點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是

否存在點(diǎn),使以為頂

點(diǎn)的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點(diǎn)的坐標(biāo),

若不存在,請(qǐng)說(shuō)明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線軸交于兩點(diǎn),與軸相交于點(diǎn).連結(jié)AC、BC,B、C兩點(diǎn)的坐標(biāo)分別為B(1,0)、,且當(dāng)x=-10和x=8時(shí)函數(shù)的值相等.

 

 

1.求a、b、c的值;

2.若點(diǎn)同時(shí)從點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).連結(jié),將沿翻折,當(dāng)運(yùn)動(dòng)時(shí)間為幾秒時(shí),點(diǎn)恰好落在邊上的處?并求點(diǎn)的坐標(biāo)及四邊形的面積;

3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸的交點(diǎn)為E,若△ODE與△OBC相似,求新拋物線的解析式。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線軸交于A、B兩點(diǎn),與軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.

(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;

(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90º后再沿軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說(shuō)明理由;

(3)設(shè)過(guò)點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q. 問(wèn)是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.                                                                                     

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆四川省鹽邊縣紅格中學(xué)九年級(jí)下學(xué)期摸底考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn).

(1)請(qǐng)求出拋物線頂點(diǎn)的坐標(biāo)(用含的代數(shù)式表示),兩點(diǎn)的坐標(biāo);
(2)經(jīng)探究可知,的面積比不變,試求出這個(gè)比值;
(3)是否存在使為直角三角形的拋物線?若存在,請(qǐng)求出;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆仙師中學(xué)九年級(jí)第一次月考試考試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線與軸交于,0)、,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個(gè)根。(14分)

(1)求拋物線的解析式;

(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn),交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,

點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是

否存在點(diǎn),使以為頂

點(diǎn)的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點(diǎn)的坐標(biāo),

若不存在,請(qǐng)說(shuō)明理由。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案