(2009•孝感)如圖,將放置于平面直角坐標(biāo)系中的三角板AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,則B′點(diǎn)的坐標(biāo)為( )

A.(,
B.(,
C.(,
D.(,
【答案】分析:根據(jù)旋轉(zhuǎn)的概念“旋轉(zhuǎn)不改變圖形的大小和形狀”,即可解決問(wèn)題.
解答:解:已知B′A′=BA=1,∠A′OB′=∠AOB=30°,OB′=OB=,
做B′C⊥x軸于點(diǎn)C,那么∠B′OC=60°,OC=OB′×cos60°=,B′C=OB′×sin60°=×=,
∴B′點(diǎn)的坐標(biāo)為(,).
故選D.
點(diǎn)評(píng):需注意旋轉(zhuǎn)前后對(duì)應(yīng)角的度數(shù)不變,對(duì)應(yīng)線段的長(zhǎng)度不變,再由三角函數(shù)的意義,計(jì)算可得答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷(十一)(解析版) 題型:解答題

(2009•孝感)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是圓外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省莆田市中考數(shù)學(xué)仿真模擬試卷(二)(解析版) 題型:解答題

(2009•孝感)如圖,點(diǎn)P是雙曲線(k1<0,x<0)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點(diǎn),交雙曲線y=(0<k2<|k1|)于E、F兩點(diǎn).
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設(shè)P點(diǎn)坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•孝感)如圖,點(diǎn)P是雙曲線(k1<0,x<0)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點(diǎn),交雙曲線y=(0<k2<|k1|)于E、F兩點(diǎn).
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設(shè)P點(diǎn)坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•孝感)如圖,點(diǎn)M是△ABC內(nèi)一點(diǎn),過(guò)點(diǎn)M分別作直線平行于△ABC的各邊,所形成的三個(gè)小三角形△1,△2,△3(圖中陰影部分)的面積分別是4,9和49.則△ABC的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案