如圖,直線y=與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,以AC為直徑作⊙M,點(diǎn)是劣弧AO上一動(dòng)點(diǎn)(點(diǎn)與不重合).拋物線y=-經(jīng)過(guò)點(diǎn)A、C,與x軸交于另一點(diǎn)B,

(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,是︱PA—PC︱的值最大;若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3)連于點(diǎn),延長(zhǎng),使,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),直線與⊙M相切,并請(qǐng)說(shuō)明理由.
(1)  B(1,0)
(2)P(-1,)
(3)當(dāng)D運(yùn)動(dòng)到劣弧AO的中點(diǎn)時(shí),直線AG與⊙M相切.證明見(jiàn)解析

試題分析:(1)先求出A、C點(diǎn)坐標(biāo),再代入y=-即可求出b、c的值,從而確定拋物線的解析式,由于點(diǎn)A、B關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),從而可求出點(diǎn)B的坐標(biāo).
(2)連接BC并延長(zhǎng)交拋物線對(duì)稱(chēng)軸于一點(diǎn),這一點(diǎn)就是點(diǎn)P.
(3)當(dāng)D運(yùn)動(dòng)到劣弧AO的中點(diǎn)時(shí),直線AG與⊙M相切.
試題解析:(1)解:由 得A(-3,0),C(0, )
將其代入拋物線解析式得: 解得:

∵對(duì)稱(chēng)軸是x=-1
∴由對(duì)稱(chēng)性得B(1,0)
(2)解:延長(zhǎng)BC與對(duì)稱(chēng)軸的交點(diǎn)就是點(diǎn)P
由B(1,0),C(0,)求得直線BC解析式為: 
當(dāng)x=-1時(shí),y= 
∴P(-1, )
(3)結(jié)論:當(dāng)D運(yùn)動(dòng)到劣弧AO的中點(diǎn)時(shí),直線AG與⊙M相切.
證明:∵在RT△AOC中,tan∠CAO=,
∴∠CAO=30°,∠ACO=60°,
∵點(diǎn)D是劣弧AO的中點(diǎn),
∴弧AD=弧OD
∴∠ACD=∠DCO=30°,
∴OF=OCtan30°=1,∠CF O=60°,
∴△AFG中,AF=3-1=2,∠AFG=∠CFO=60°,
∵FG=2,
∴△AFG為等邊三角形,
∴∠GAF=60°,
∴∠CAG=30°+60°=90°,
∴AC⊥AG,
∴AG為⊙M的切線.
考點(diǎn): 1. 二次函數(shù)綜合題;2.直線與圓的位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱(chēng)為“蛋線”,已知點(diǎn)C的坐標(biāo)為(0,-),點(diǎn)M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點(diǎn)P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)∆BDM為直角三角形時(shí),請(qǐng)直接寫(xiě)出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

西寧中心廣場(chǎng)有各種音樂(lè)噴泉,其中一個(gè)噴水管?chē)娝淖畲蟾叨葹?米,此時(shí)距噴水管的水平距離為米,在如圖所示的坐標(biāo)系中,這個(gè)噴泉的函數(shù)關(guān)系式是(  )
A.y=-+3B.y=-3+3
C.y=-12+3D.y=-12+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把二次函數(shù)y=(x-1)2+2的圖象繞原點(diǎn)旋轉(zhuǎn)180°后得到的圖象的解析式為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱(chēng)為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是       三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點(diǎn)O為對(duì)稱(chēng)中心的矩形ABCD?若存在,求出過(guò)O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由;
(3)在(2)的條件下,若以點(diǎn)E為圓心,r為半徑的圓與線段AD只有一個(gè)公共點(diǎn),求出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某經(jīng)銷(xiāo)商代理銷(xiāo)售一種手機(jī),按協(xié)議,每賣(mài)出一部手機(jī)需另交品牌代理費(fèi)100元,已知該種手機(jī)每部進(jìn)價(jià)800元,銷(xiāo)售單價(jià)為1200元時(shí),每月能賣(mài)出100部,市場(chǎng)調(diào)查發(fā)現(xiàn),若每部手機(jī)每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤(rùn),求讓利價(jià)
(利潤(rùn)=銷(xiāo)售收入-進(jìn)貨成本-品牌代理費(fèi))
(2)設(shè)讓利x元,月利潤(rùn)為y元,寫(xiě)出y與x的函數(shù)關(guān)系式,并求讓利多少元時(shí),月利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的兩邊長(zhǎng)AB=18 cm,AD=4 cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1 cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線y=ax+c與拋物線y=ax2+c的圖象畫(huà)在同一個(gè)直角坐標(biāo)系中,可能是下面的

查看答案和解析>>

同步練習(xí)冊(cè)答案