【題目】中,,

1)如圖上的點,過點作直線截,使截得的三角形與相似.例如:過點,則截得的相似.請你在圖中畫出所有滿足條件的直線.

2)如圖上異于點,的動點,過點作直線截,使截得的三角形與相似,直接寫出滿足條件的直線的條數(shù).(不要求畫出具體的直線)

【答案】見解析

【解析】

(1)利用平行于三角形一邊的直線和其他兩邊相交,所截得的三角形與原三角形相似的判定定理過點P作兩條,再利用兩組對應角相等的兩個三角形相似的判定定理,過點P作兩條.

(2)Q點看成從C點出發(fā)到B點的動點,發(fā)現(xiàn)當Q點在某一個位置時,所作截的三角形與原三角形相似的數(shù)量減少了一個,通過此時的臨界條件把QC的長度計算出來,進行分類說明.

1)如圖所示:

第一種:利用平行于三角形一邊的直線和其他兩邊相交,所截得的三角形與原三角形相似的判定定理,過點P分別做ABBC的平行線PDPE.分別得到△ADP∽△ABC.PCE∽△ACB.

第二種:利用兩組對應角相等的兩個三角形相似的判定定理,過P分別做PG垂直AB于點G,做PFBC于點F,使∠PFC=A.分別得到△AGP∽△ACB,FPC∽△ACB.

2

如圖所示,假設點Q從點C開始往點B移動,由(1)可知,作QDAB,

得△BQD∽△BAC.QFAC于點F,使∠QFC=B,得△QCF∽△ACB.

QEAC,得△BQE∽△BCA.QGAB,得△QCG∽△BCA.

當移動到位置時,此時出現(xiàn)點F于點A重合,此時是一個臨界點,利用△QCF∽△ACB得到,則又此時CA=CF,所以QC=

該點往左移動,不能在三角形ABC內(nèi)做出作QFAC于點F,該點往右移動,可以在三角形ABC內(nèi)做出作QFAC于點F,使△QCF∽△ACB.

故當0QC≤時,滿足條件的直線有4條;

QC6時,滿足條件的直線有3條.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(探究函數(shù)的圖象與性質(zhì))

1)函數(shù)的自變量x的取值范圍是________;

2)下列四個函數(shù)圖象中,函數(shù)的圖象大致是_______;

3)對于函數(shù),求當x>0時,y的取值范圍。請將下面求解此問題的過程補充完整:

解:因為x>0,所以_________。

因為,所以y________

(拓展運用)

4)若函數(shù),則y的取值范圍是_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調(diào)查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)本次抽樣調(diào)查學生的人數(shù)為   

2)補全兩個統(tǒng)計圖,并求出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù).

3)若該校共有840名學生,請根據(jù)抽樣調(diào)查結(jié)果估計獲得三等獎的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分別求出滿足下列條件的二次函數(shù)的解析式.

1)圖象經(jīng)過點A1,0),B0,-3),對稱軸是直線x=2;

2)圖象頂點坐標是(-2,3),且過點(1,-3;

3)圖象經(jīng)過點(-1,3),(1, 3),(2,6).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周長相等的正三角形、正四邊形、正六邊形的面積S3S4、S6間的大小關系是( )

A. S3S4S6 B. S6S4S3 C. S6S3S4 D. S4S6S3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形兩邊的長分別是86,第三邊的長是一元二次方程的一個實數(shù)根,則該三角形的面積是  

A. 24B. 24C. 48D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖和圖兩幅不完整的統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

1)本次調(diào)查的學生共有  人;在扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是   ;

2)將條形統(tǒng)計圖補充完整;

3)在被調(diào)查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,C、D⊙O上的點,且OC∥BD,AD分別與BC、OC相較于點E、F,則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

同步練習冊答案