【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長.
【答案】(1);(2)見解析;(3).
【解析】試題分析:(1)根據(jù)圓周角定理,即可求得∠ABC的度數(shù);
(2)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;
(3)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長公式,即可求得劣弧AC的長.
試題解析:(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直徑,∴∠ACB=90°,∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;
(3)如圖,連接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的長為= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若4個(gè)數(shù)6,x,8,10的中位數(shù)為7,則x的取值范圍是( ).
A.x=6
B.x=7
C.x≤6
D.x≥8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)初步統(tǒng)計(jì),2015年北侖區(qū)實(shí)現(xiàn)地區(qū)生產(chǎn)總值(GDP)約為1134.6億元.其中1134.6億元用科學(xué)記數(shù)法表示為( )
A.1134.6×108元
B.11.346×1010元
C.1.1346×1011元
D.1.1346×1012元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在平面直角坐標(biāo)系中,⊙O1與x軸切于A(﹣3,0)與y軸交于B、C兩點(diǎn),BC=8,連AB.
(1)求證:∠ABO1=∠ABO;
(2)求AB的長;
(3)如圖2,過A、B兩點(diǎn)作⊙O2與y軸的正半軸交于M,與O1B的延長線交于N,當(dāng)⊙O2的大小變化時(shí), BM﹣BN的值是否發(fā)生不變?并說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“小小竹排水中游,巍巍青山兩岸走”所描繪的圖形變換主要是 ( )
A. 平移變換 B. 旋轉(zhuǎn)變換 C. 軸對稱變換 D. 中心對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果鴨綠江水位高1m時(shí)水位變化記作+1m,那么水位下降0.5m時(shí)水位變化記作( )
A. ﹣0.5m B. 0.5m C. 1.5m D. ﹣1.5m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1, y1)、B(x2, y2)在直線y=kx+b上,且直線經(jīng)過第一、二、四象限,當(dāng)x1<x2時(shí),y1與y2的大小關(guān)系為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com