精英家教網 > 初中數學 > 題目詳情

當平行四邊形_____________時,我們就把它叫做矩形.

答案:有一內角是直角
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

對于任意兩個二次函數:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,其中a1•a2≠0.當|a1|=|a2|時,我們稱這兩個二次函數的圖象為全等拋物線.現有△ABM,A(-1,0),B(1,0).我們記過三點的二次函數的圖象為“C□□□”(“□□□”中填寫相應三個點的字母).如過點A、B、M三點的二次函數的圖象為CABM
精英家教網
(1)如果已知M(0,1),△ABM≌△ABN.請通過計算判斷CABM與CABN是否為全等拋物線;
(2)①若已知M(0,n),在圖中的平面直角坐標系中,以A、B、M三點為頂點,畫出平行四邊形.求拋物線CABM的解析式,然后請直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當m,n滿足什么條件時,存在拋物線CABM?根據以上的探究結果,在圖中的平面直角坐標系中,以A、B、M三點為頂點,畫出平行四邊形.然后請列出所有滿足過平行四邊形中三個頂點且能與CABM全等的拋物線C□□□”.

查看答案和解析>>

科目:初中數學 來源: 題型:

對于任意兩個二次函數:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當|a1|=|a2|時,我們稱這兩個二次函數的圖象為全等拋物線.
現有△ABM,A(-1,0),B(1,0).記過三點的二次函數拋物線為“C□□□”(“□□□”中填寫相應三個點的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請通過計算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點為頂點,畫出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當m,n滿足什么條件時,存在拋物線CABM根據以上的探究結果,判斷是否存在過平行四邊形中三個頂點且能與CABM全等的拋物線?若存在,請列出所有滿足條件的拋物線“C□□□”;若不存在,請說明理由.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:022

當平行四邊形_____________時,我們就把它叫做矩形.

查看答案和解析>>

同步練習冊答案