如圖,在△ABC中,∠C=90°,BD平分∠ABC,交AC于點D;若DC=3,AB=8,則△ABD的面積是( 。
分析:首先過點D作DE⊥AB于E,由在△ABC中,∠C=90°,BD平分∠ABC,根據(jù)角平分線的性質(zhì),即可求得DE的長,又由三角形面積的求解方法,即可求得答案.
解答:解:過點D作DE⊥AB于E,
∵∠C=90°,
∴DC⊥BC,
∵BD平分∠ABC,
∴DE=CD=3,
∴S△ABD=
1
2
AB•DE=
1
2
×8×3=12.
故選C.
點評:此題考查了角平分線的性質(zhì)與三角形的面積問題.此題比較簡單,解題的關(guān)鍵是掌握角平分線的性質(zhì),求得△ABD的高.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案