(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動,點(diǎn)P在AO,OB,BA上運(yùn)動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動點(diǎn)P與動直線l同時(shí)出發(fā),運(yùn)動時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動一周時(shí),直線l和動點(diǎn)P同時(shí)停止運(yùn)動.
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是______
【答案】分析:(1)考查了待定系數(shù)法求一次函數(shù);
(2)此題要掌握點(diǎn)P的運(yùn)動路線,要掌握點(diǎn)P在不同階段的運(yùn)動速度,即可求得;
(3)①此題需要分三種情況分析:點(diǎn)P在線段OA上,在線段OB上,在線段AB上;根據(jù)菱形的判定可知:在線段EF的垂直平分線上與x軸的交點(diǎn),可求的一個(gè);當(dāng)點(diǎn)P在線段OB上時(shí),形成的是三角形,不存在菱形;當(dāng)點(diǎn)P在線段BA上時(shí),根據(jù)對角線互相平分且互相垂直的四邊形是菱形求得.
②當(dāng)t﹦2時(shí),可求的點(diǎn)P的坐標(biāo),即可確定△BEP,根據(jù)相似三角形的判定定理即可求得點(diǎn)Q的坐標(biāo),解題時(shí)要注意答案的不唯一性.
解答:解:(1)y=-x+3;(4分)

(2)(0,),t=;(4分)(各2分)

(3)①當(dāng)點(diǎn)P在線段AO上時(shí),過F作FG⊥x軸,G為垂足(如圖1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°
∴△EOP≌△FGP,∴OP=PG﹒
又∵OE=FG=t,∠A=60°,∴AG==t
而AP=t,
∴OP=3-t,PG=AP-AG=t
由3-t=t得t=;(1分)
當(dāng)點(diǎn)P在線段OB上時(shí),形成的是三角形,不存在菱形;
當(dāng)點(diǎn)P在線段BA上時(shí),
過P作PH⊥EF,PM⊥OB,H、M分別為垂足(如圖2)
∵OE=t,∴BE=3-t,∴EF==3-
∴MP=EH=EF=,又∵BP=2(t-6)
在Rt△BMP中,BP•cos60°=MP
即2(t-6)•=,解得t=.(1分)
綜上所述,t為時(shí),四邊形PEP'F為菱形.

②存在﹒理由如下:
∵t=2,∴OE=,AP=2,OP=1
將△BEP繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)90°,得到△B'EC(如圖3)
∵OB⊥EF,
∴點(diǎn)B'在直線EF上,
∵C點(diǎn)橫坐標(biāo)絕對值等于EO長度,C點(diǎn)縱坐標(biāo)絕對值等于EO-PO長度
∴C點(diǎn)坐標(biāo)為(-,-1)
過F作FQ∥B'C,交EC于點(diǎn)Q,
則△FEQ∽△B'EC
===,可得Q的坐標(biāo)為(-,)(1分)
根據(jù)對稱性可得,Q關(guān)于直線EF的對稱點(diǎn)Q'(-,)也符合條件.(1分)
點(diǎn)評:此題考查了待定系數(shù)法求一次函數(shù)的解析式,還考查了菱形的性質(zhì)與判定以及相似三角形的判定與性質(zhì),解題的關(guān)鍵要注意數(shù)形結(jié)合思想的應(yīng)用,還要注意答案的不唯一性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動,點(diǎn)P在AO,OB,BA上運(yùn)動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動點(diǎn)P與動直線l同時(shí)出發(fā),運(yùn)動時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動一周時(shí),直線l和動點(diǎn)P同時(shí)停止運(yùn)動.
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動,點(diǎn)P在AO,OB,BA上運(yùn)動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動點(diǎn)P與動直線l同時(shí)出發(fā),運(yùn)動時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動一周時(shí),直線l和動點(diǎn)P同時(shí)停止運(yùn)動.
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動,點(diǎn)P在AO,OB,BA上運(yùn)動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動點(diǎn)P與動直線l同時(shí)出發(fā),運(yùn)動時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動一周時(shí),直線l和動點(diǎn)P同時(shí)停止運(yùn)動.
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金華市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動,點(diǎn)P在AO,OB,BA上運(yùn)動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動點(diǎn)P與動直線l同時(shí)出發(fā),運(yùn)動時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動一周時(shí),直線l和動點(diǎn)P同時(shí)停止運(yùn)動.
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是______

查看答案和解析>>

同步練習(xí)冊答案