數(shù)學(xué)活動——求重疊部分的面積。
問題情境:數(shù)學(xué)活動課上,老師出示了一個問題:
如圖,將兩塊全等的直角三角形紙片△ABC和△DEF疊放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,頂點D與邊AB的中點重合,DE經(jīng)過點C,DF交AC于點G。
求重疊部分(△DCG)的面積。
(1)獨立思考:請解答老師提出的問題。
(2)合作交流:“希望”小組受此問題的啟發(fā),將△DEF繞點D旋轉(zhuǎn),使DE⊥AB交AC于點H,DF交AC于點G,如圖(2),你能求出重疊部分(△DGH)的面積嗎?請寫出解答過程。
(3)提出問題:老師要求各小組向“希望”小組學(xué)習(xí),將△DEF繞點D旋轉(zhuǎn),再提出一個求重疊部分面積的問題!皭坌摹毙〗M提出的問題是:如圖(3),將△DEF繞點D旋轉(zhuǎn),DE,DF分別交AC于點M,N,使DM=MN求重疊部分(△DMN)的面積、
任務(wù):①請解決“愛心”小組所提出的問題,直接寫出△DMN的面積是
②請你仿照以上兩個小組,大膽提出一個符合老師要求的問題,并在圖中畫出圖形,標(biāo)明字母,不必解答(注:也可在圖(1)的基礎(chǔ)上按順時針方向旋轉(zhuǎn))。
【解析】解:∵∠ACB=90°D是AB的中點,
|
又∵△ABC≌△FDE,∴∠FDE=∠B
∴∠FDE=∠DCB,∴DG∥BC∴∠AGD=∠ACB=90°∴DG⊥AC
又∵DC=DA,∴G是AC的中點,
∴CG=AC=×8=4,DG=BC=×6=3
∴SDCG=×CG·DG=×4×3=6
|
∵△ABC≌△FDE,∴∠B=∠1
∵∠C=90°,ED⊥AB,∴∠A+∠B=90°, ∠A+∠2=90°,
∴∠B=∠2,∴∠1=∠2
∴GH=GD
∵∠A+∠2=90°,∠1+∠3=90°
∴∠A=∠3,∴AG=GD,∴AG=GH
∴點G是AH的中點,
在Rt△ABC中,AB= 10
∵D是AB的中點,∴AD=AB=5
在△ADH與△ACB中,∵∠A =∠A,∠ADH=∠ACB=90°,
∴△ADH∽△ACB, ∴=,=,∴DH=,
∴S△DGH=S△ADH=××DH·AD=××5=
|
連接BH,∵DE⊥AB,D是AB的中點,∴AH=BH,設(shè)AH=x則CH=8-x
在Rt△BCH中,CH2+BC2=BH2,即(8-x)2+36=x2,解得x=
∴S△ABH=AH·BC=××6=
|
解法三:同解法一,∠1=∠2
連接CD,由(1)知,∠B=∠DCB=∠1,∠1=∠2=∠B=∠DCB,△DGH∽△BDC,
作DM⊥AC于點M,CN⊥AB于點N,∵D是AB的中點,∠ACB=90°
∴CD=AD=BD,∴點M是AC的中點,∴DM=BC=×6=3
在Rt△ABC中,AB==10,AC·BC=AB·CN,
∴CN=.
∵△DGH∽△BDC, ∴,
∴=
∴
|
|
【答案】①
②注:此題答案不唯一,語言表達清晰、準確得1分,畫圖正確得1分,重疊部分未涂陰影不扣分。示例:如圖,將△DEF繞點D旋轉(zhuǎn),使DE⊥BC于點M,DF交AC于點N,求重疊部分(四邊形DMCN)的面積。
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)活動與思考
我們要學(xué)會用數(shù)學(xué)的眼光看世界——豐富多彩的圖形世界。在“圖形世界”里,見到許多熟悉的基本圖形,感受到圖形的平移、翻折、旋轉(zhuǎn)等變化;也發(fā)現(xiàn)“圖形世界”是由基本圖形構(gòu)成的.可以利用這些變化和基本圖形設(shè)計出符合要求的圖形.
例:直角三角形通過剪切可以拼成一個與該直角三角形面積相等的長方形.方法如圖示:
請你用圖示的方法解答下列問題:
(1)如圖,對一個任意的三角形,設(shè)計一種方案,將它分成若干塊,再拼成一個與原三角形面積相等的長方形;
(2)如圖,對一個任意的四邊形,設(shè)計一種方案,將它分成若干塊,再拼成一個與原四邊形面積相等的長方形;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com