(2011•南崗區(qū)一模)在溫家寶總理的《政府工作報(bào)告》指出“今年中央政府?dāng)M投入423 000 000 000元,用于扶助和促進(jìn)就業(yè)”.其中數(shù)字423 000 000 000用科學(xué)記數(shù)法表示為
4.23×1011
4.23×1011
分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).
解答:解:423 000 000 000=4.23×1011,
故答案為:4.23×1011
點(diǎn)評:此題主要考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)先化簡,再求代數(shù)式
x2- 4
x2-4x+4
÷
x+2
x+1
-
x
x-2
的值,其中x=sin45°+2tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)用19米長的鋁合金條制成如圖所示的矩形窗框ACDF.其中BE、GH均是鋁合金制成的格條,且BE∥AF,GH⊥CD,EF=0.5m.設(shè)AF的長為x(單位:米),AC的長為y(單位:米).
(1)求y與x的函數(shù)關(guān)系式(不必寫出x 的取值范圍);
(2)若這個(gè)矩形窗框ACDF的面積等于10平方米,且AF<AC,求出此時(shí)AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)某中學(xué)有三名學(xué)生競選學(xué)生會(huì)主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),并繪制了不完整的成績表和統(tǒng)計(jì)圖1.
競選人 A   B   C
筆試  85  95  90
口試    80  85

(1)請把圖1空缺的部分補(bǔ)充完整;
(2)競選的最后一個(gè)程序是由本校的300名學(xué)生進(jìn)行投票,三位競選人的得票情況如圖2(沒有棄權(quán)票,每名學(xué)生只能選舉一人)所示,請計(jì)算競選人A的得票數(shù);
(3)在(2)條件下,若每票得1分,學(xué)校將筆試、口試、得票三項(xiàng)測試得分按2:4:4的比例確定每個(gè)人的成績,請計(jì)算出競選人B的最后成績.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)如圖1,直線y=-kx+6k(k>0)與x軸、y軸分別相交于點(diǎn)A、B,且△AOB的面積是24.
(1)求直線AB的解析式;
(2)如圖2,點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿折線OA-AB運(yùn)動(dòng);同時(shí)點(diǎn)E從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿y軸正半軸運(yùn)動(dòng),過點(diǎn)E作與x軸平行的直線l,與線段AB相交于點(diǎn)F,當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),點(diǎn)P、E均停止運(yùn)動(dòng).連接PE、PF,設(shè)△PEF的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,過P作x軸的垂線,與直線l相交于點(diǎn)M,連接AM,當(dāng)tan∠MAB=
12
時(shí),求t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)Rt△ABC中,∠ACB=90°,CD為高線,點(diǎn)E在邊BC上,且BE=2EC,連接AE,EF⊥AE,與邊AB相交于點(diǎn)F.
(1)如圖1,當(dāng)tan∠BAC=1時(shí),求證:EF=2EG
(2)如圖2,當(dāng)tan∠BAC=2時(shí),則線段EF、EG的數(shù)量關(guān)系為
EF=EG
EF=EG
;
(3)如圖3,在(2)的條件下,將∠FEG繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α,旋轉(zhuǎn)后EF邊所在的直線與邊AB相交于點(diǎn)F′,EG邊所在的直線與邊AC相交于點(diǎn)H,與高線CD相交于點(diǎn)G′,若AH=3
5
,且
FF′
CG′
=
2
7
,求線段G′H的長.

查看答案和解析>>

同步練習(xí)冊答案