【題目】定義:兩條拋物線頂點(diǎn)都在直線y=x上,且兩條拋物線關(guān)于原點(diǎn)成中心對(duì)稱,則稱這兩條拋物線為一對(duì)“友好拋物線”.

(1)拋物線y=2(x-1)2+1如圖1所示,請(qǐng)畫出它的“友好拋物線”,并直接寫出它的解析式;
(確認(rèn)無(wú)誤后,請(qǐng)用黑色水筆描黑)
(2)一對(duì)“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對(duì)“友好拋物線”與y軸交點(diǎn)記為A,B,記AB=n(當(dāng)A與B重合時(shí),記n=0),現(xiàn)我們來(lái)探究n與h的關(guān)系;
①當(dāng)h≥0時(shí),如圖2所示,求n與h的函數(shù)關(guān)系式;
②當(dāng)h<0時(shí),求n與h的函數(shù)關(guān)系式;
(3)在(2)的條件下,要使 ≤n≤ ,試直接寫出h的取值范圍.

【答案】
(1)

解:畫圖如下圖,函數(shù)解析式為:y=-2(x+1)2-1.


(2)

解:拋物線y= -(x+h)2-h的“友好拋物線”解析式為:y=(x-h)2+h

①當(dāng)h≥0時(shí),A(0, h2+h), B(0,-h2-h)

∴n=AB=(h2+h)-(-h2-h)=2h2+2h

②當(dāng)h<0時(shí),

當(dāng)h2+h<-h2-h,即-1<h<0

n= AB=(-h2-h)-(h2+h)=-2h2-2h

當(dāng)h2+h≥-h2-h,即h≤-1

n= AB=(h2+h)-(-h2-h)=2h2+2h

綜上可得:


(3)

解:由(2)可知:

函數(shù)圖象如下:

可求得各點(diǎn)坐標(biāo)如下:

C ;H

D ;E F ; G ,

所以要使 n , h的取值范圍為:


【解析】(1)根據(jù)“友好拋物線”的定義和成中心對(duì)稱的特征,寫出拋物線的解析式并畫圖;
(2)利用第(1)問的結(jié)論,根據(jù)兩點(diǎn)間距離公式表示出AB的長(zhǎng),進(jìn)而求出n與h的函數(shù)關(guān)系式;
(3)利用第(2)問的結(jié)論,數(shù)形結(jié)合,通過解方程求出各個(gè)點(diǎn)的坐標(biāo)即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,E是正方形ABCD的對(duì)角線BD上的點(diǎn),連接AE、CE.

(1)求證:AE=CE;
(2)若將△ABE沿AB對(duì)折后得到△ABF;當(dāng)點(diǎn)E在BD的何處時(shí),四邊形AFBE是正方形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(8,0).點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿AO運(yùn)動(dòng);同時(shí),點(diǎn)Q從O出發(fā),以每秒2個(gè)單位的速度沿OB運(yùn)動(dòng),當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

(1)求運(yùn)動(dòng)時(shí)間t的取值范圍;
(2)整個(gè)運(yùn)動(dòng)過程中,以點(diǎn)P、O、Q為頂點(diǎn)的三角形與Rt△AOB有幾次相似?請(qǐng)直接寫出相應(yīng)的t值.
(3)t為何值時(shí),△POQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F.

(1)求證:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:
(1)x2+2x=0;
(2)x2-x-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=CD=8,AB=CB=6,點(diǎn)E,F(xiàn),G,H分別是DA,AB,BC,CD的中點(diǎn).

(1)求證:四邊形EFGH是矩形;
(2)若DA⊥AB,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)點(diǎn)先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),這稱為一次變換,已知點(diǎn)A的坐標(biāo)為(﹣1,0),則點(diǎn)A經(jīng)過連續(xù)2016次這樣的變換得到的點(diǎn)A2016的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x+4與兩坐標(biāo)軸分別交于A,B兩點(diǎn),⊙C的圓心坐標(biāo)為(2,O),半徑為2,若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最小值和最大值分別是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣ x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣ x2+2x+5的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣ x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案