3 |
3 |
5
| ||
2 |
5
| ||
2 |
1 |
2 |
1 |
2 |
BC2-BE2 |
42-22 |
3 |
3 |
1 |
2 |
1 |
2 |
5
| ||
2 |
5
| ||
2 |
5
| ||
2 |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年浙江省衢州華外九年級第一學期第三次質量檢測數(shù)學卷 題型:解答題
(本題10分)已知:正方形ABCD的邊長為a,P是邊CD上一個動點不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.
【小題1】觀察計算:(1)如圖1,當a=4,b=1時,四邊形ABFD的面積為 ;
(2)如圖2,當a=4,b=2時,四邊形ABFD的面積為 ;
(3)如圖3,當a=4,b=3時,四邊形ABFD的面積為 ;
【小題2】探索發(fā)現(xiàn):(4)根據(jù)上述計算的結果,你認為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關系?證明你的結論;
【小題3】綜合應用:(5)農(nóng)民趙大伯有一塊正方形的土地(如圖),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側補給趙大伯一塊土地,補償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來正方形土地的面積相等,M、E、B三點要在一條直線上,請你畫圖說明,如何確定M點的位置.(要求尺規(guī)作圖,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江西省南昌市九年級下學期第二次聯(lián)考數(shù)學試卷(帶解析) 題型:解答題
【小題1】觀察發(fā)現(xiàn)
如題27(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。 做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如題27(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這
點就是所求的點P,故BP+PE的最小值為 .
【小題2】實踐運用
如題27(c)圖,已知⊙O的直徑CD為4,弧AD所對圓心角的度數(shù)為60°,點B是弧AD的中點,請你在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
【小題3】拓展延伸
如題27(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com