如圖.等腰直角三角形ABC中,∠A=90°,P為BC的中點(diǎn),小明拿著含45°角的透明三角形,使45°角的頂點(diǎn)落在點(diǎn)P,且繞P旋轉(zhuǎn).

(1)如圖①:當(dāng)三角板的兩邊分別AB、AC交于E、F點(diǎn)時(shí),試說(shuō)明△BPE∽△CFP.

(2)將三角板繞點(diǎn)P旋轉(zhuǎn)到圖②,三角板兩邊分別交BA延長(zhǎng)線(xiàn)和邊AC于點(diǎn)EF.

探究1:△BPE與△CFP.還相似嗎?(只需寫(xiě)結(jié)論)

探究2:連接EF,△BPE與△EFP是否相似?請(qǐng)說(shuō)明理由.

 

【答案】

(1)證明:∵在△ABC中,∠ A=90°,AB=AC,

∴∠B=∠C=45°.

∵∠EPC=∠EPF+∠FPC=∠B+∠BEP,∠EPF=45°

∴∠BEP=∠FPC,

∵∠B=∠C

∴△BPE∽△CFP(兩角對(duì)應(yīng)相等的兩個(gè)三角形相似).

(2)解:①△BPE∽△CFP;②△BPE與△PFE相似.

下面證明結(jié)論:

同(1),可證△BPE∽△CFP,得 CP:BE=PF:PE,而CP=BP,因此 BP:BE=PF:PE.

又因?yàn)椤螮BP=∠EPF,所以△BPE∽△PFE(兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似).

【解析】(1)找出△BPE與△CFP的對(duì)應(yīng)角,利用三角形一外角等于和它不相鄰的兩內(nèi)角和性質(zhì)列出等式,得出∠BPE=∠CFP,從而解決問(wèn)題;

(2)①小題同前可證,②小題可通過(guò)對(duì)應(yīng)邊成比例證明.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形ABC繞C點(diǎn)按順時(shí)針旋轉(zhuǎn)到△A1B1C1的位置(A、C、B1在同一直線(xiàn)上),∠B=90°,如果AB=1,那么AC運(yùn)動(dòng)到A1C1所經(jīng)過(guò)的圖形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形ABC的腰長(zhǎng)與正方形DEFG的邊長(zhǎng)相符,且邊AC與DE在同一直線(xiàn)l上,△ABC從如圖所示的起始位置(A、E重合),沿直線(xiàn)l水平向右平移,直至C、D重合為止.設(shè)△ABC與正方形DEFG重疊部分的面積為y,平移的距離為x,則y與x之間的函數(shù)關(guān)系大致是( �。�
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰直角三角形ABC中,∠BAC=90°,D、E分別為AB、AC邊上的點(diǎn),AD=AE,AF⊥BE交BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線(xiàn)于點(diǎn)G,交AC于點(diǎn)M.
(1)求證:△ADC≌△AEB;
(2)判斷△EGM是什么三角形,并證明你的結(jié)論;
(3)判斷線(xiàn)段BG、AF與FG的數(shù)量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰直角三角形△ABC中,∠ACB=90°,點(diǎn)D是BC的中點(diǎn),CE⊥AD于點(diǎn)F交AB于點(diǎn)E,CH是AB上的高交AD于點(diǎn)G.
(1)找出圖中的全等三角形;
(2)找出與∠ADC相等的角,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰直角三角形AEF的頂點(diǎn)E在等腰直角三角形ABC的邊BC上.AB的延長(zhǎng)線(xiàn)交EF于D點(diǎn),其中∠AEF=∠ABC=90°.
(1)求證:
AD
AE
=
2
AE
AC

(2)若E為BC的中點(diǎn),求
DB
DA
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案