(1)證明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD+∠CAD=∠BAC=90°,
∠CAF+∠CAD=∠DAF=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴①CF=BD,
∠ACF=∠ABD,
∴∠BCF=∠ACB+∠ACF=45°+45°=90°,
∴②CF⊥BD;
(2)解:當(dāng)點(diǎn)D在線段BC的延長線上時,線段CF與BD的上述關(guān)系仍然成立;
(3)解:當(dāng)點(diǎn)D在線段BC的反向延長線上,且點(diǎn)A、F在直線BC的兩側(cè),線段CF與BD的上述關(guān)系仍然成立.
理由如下:同理可證△ABD≌△ACF,
∴CF=BD,∠ACF=∠ABD=180°-45°=135°,
∵∠ACB=45°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BD.
分析:(1)根據(jù)等腰直角三角形的性質(zhì)求出∠ABC=∠ACB=45°,正方形的性質(zhì)可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,再利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠ABD,然后求出∠BCF=90°,再根據(jù)垂直的定義證明即可;
(2)結(jié)論仍然成立;
(3)同(1)可證△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠ABD=135°,然后求出∠BCF=90°,再根據(jù)垂直的定義證明即可.
點(diǎn)評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)點(diǎn)D的位置的變化,△ABD和△ACF始終全等是解題的關(guān)鍵.